SEMESTER 3

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

MATHEMATICS FOR COMPUTER AND INFORMATION SCIENCE-3

Course Code	GAMAT301	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Basic calculus	Course Type	Theory

(Group A)

Course Objectives:

1. To familiarize students with the foundations of probability and analysis of random processes used in various applications in engineering and science.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Random variables, Discrete random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, the Binomial probability distribution, the Poisson probability distribution, Poisson distribution as a limit of the binomial distribution, Joint pmf of two discrete random variables, Marginal pmf, Independent random variables, Expected value of a function of two discrete variables. [Text 1: Relevant topics from sections 3.1 to 3.4, 3.6, 5.1, 5.2]	9
2	Continuous random variables and their probability distributions, Cumulative distribution function, Expectation, Mean and variance, Uniform, Normal and Exponential distributions, Joint pdf of two Continuous random variables, Marginal pdf, Independent random variables, Expectation value of a function of two continuous variables. [Text 1: Relevant topics from sections 3.1, 4.1, 4.2, 4.3, 4.4, 5.1, 5.2]	9

3	 Limit theorems : Markov's Inequality, Chebyshev's Inequality, Strong Law of Large Numbers (Without proof), Central Limit Theorem (without proof), Stochastic Processes: Discrete-time process, Continuous-time process, Counting Processes, The Poisson Process, Interarrival times (Theorems without proof) [Text 2: Relevant topics from sections 2.7, 2.9, 5.3] 	9
4	Markov Chains, Random Walk Model, Chapman–Kolmogorov Equations, Classification of States, Irreducible Markov chain, Recurrent state, Transient state, Long-Run Proportions. (Theorems without proof) [Text 2: Relevant topics from sections 4.1, 4.2, 4.3, 4.4]	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the concept, properties and important models of discrete random variables and to apply in suitable random phenomena.	К3
CO2	Understand the concept, properties and important models of continuous random variables and to apply in suitable random phenomena.	К3
СО3	Familiarize and apply limit theorems and to understand the fundamental characteristics of stochastic processes.	К3
CO4	Solve problems involving Markov Chains, to understand their theoretical foundations and to apply them to model and predict the behaviour of various stochastic processes.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	-	2	-	-	-	-	-	-	-	2
CO2	3	3	-	2	-	-	-	-	-	-	-	2
CO3	3	3	-	2	-	-	-	-	-	-	-	2
CO4	3	3	-	2	-	-	-	-	-	-	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Probability and Statistics for Engineering and the Sciences	Devore J. L	Cengage Learning	9 th edition, 2016			
2	Introduction to Probability Models	Sheldon M. Ross	Academic Press	13 th edition, 2024			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Probability and Random Processes for Electrical and Computer Engineers	John A. Gubner	Cambridge University Press	2012		
2	Probability Models for Computer Science	Sheldon M. Ross	Academic Press	1 st edition, 2001		
3	Probability, Random Variables and Stochastic Processes	Papoulis, A. & Pillai, S.U.,	Tata McGrawHill.	4 th edition, 2002		
4	Probability, Statistics and Random Processes	Kousalya Pappu	Pearson	2013		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://onlinecourses.nptel.ac.in/noc22_mg31/preview					
2	https://onlinecourses.nptel.ac.in/noc22_mg31/preview					
3	https://archive.nptel.ac.in/courses/108/103/108103112/					
4	https://archive.nptel.ac.in/courses/108/103/108103112/					

THEORY OF COMPUTATION

(Common to CS/CA/CM/CD/CN/CC)

Course Code	PCCST302	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST205	Course Type	Theory

Course Objectives:

- 1. To introduce the concept of formal languages.
- **2.** To discuss the Chomsky classification of formal languages with a discussion on grammar and automata for regular, context-free, context-sensitive, and unrestricted languages.
- **3.** To discuss the notions of decidability and the halting problem.

Module No.	e Syllabus Description				
	Foundations (Linz, Hopcroft) Motivation for studying computability, need for mathematical modeling - automata, Introducing automata through simple models - On/Off switch,				
1	coffee vending machine. Three basic concepts: Alphabet, Strings, and Languages Finite Automata (Linz, Hopcroft)	11			
	Formal definition of a finite automaton, Deterministic Finite Automata (DFA), Regular languages, Nondeterminism (guess and verify paradigm), Formal definition of a nondeterministic finite automaton, NFA with epsilon transitions, Eliminating epsilon transitions (Proof not expected), Equivalence of NFAs and DFAs (Proof not expected) - The Subset				

SYLLABUS

	Construction DEA State Minimization Applications of finite systemate	
	Construction. DFA State Minimization, Applications of finite automata -	
	text search, keyword recognition	
	Regular Expressions (Linz)	
	The formal definition of a regular expression, Building Regular	
	Expressions, Equivalence with finite automata (Proof not expected) -	
	Converting FA to Regular Expressions, Converting Regular Expressions	
	to FA, Pattern Matching and Regular Expressions, Regular grammar,	
	Equivalence with FA - Conversion in both directions	
	Properties of Regular Languages (Linz)	
2	Closure and Decision Properties of Regular Languages (with proofs), The	
	Pumping Lemma for Regular Languages (with formal proof), Pumping	
	lemma as a tool to prove non regularity of languages	
	Contact Free Commons and Applications (Ling)	
	Context-Free Grammars and Applications (Linz)	
	Formal definition of a context-free grammar, Designing context-free	11
	grammars, Leftmost and Rightmost Derivations Using a Grammar, Parse	11
	Trees, Ambiguous Grammars, Resolving ambiguity, Inherent ambiguity,	
	CFGs, and programming languages	
-		
	Pushdown Automata (Linz)	
	Formal definition of a pushdown automaton, DPDA and NPDA, Examples	
	of pushdown automata	
	Equivalence NPDAs and CFGs (Proof not expected) - conversions in both	
	directions	
3	Simplification of Context-Free Languages (Linz)	11
	Elimination of useless symbols and productions, Eliminating epsilon	
	productions, Eliminating unit productions, Chomsky normal form,	
	Greibach normal form,	
	Properties of Context-Free Languages (Linz)	
	The Pumping Lemma for Context-Free Languages (with formal proof),	
	Closure and Decision Properties of Context-Free Languages (with formal	
	proofs)	
	1 /	

	Turing Machines (Kozen)	
4	 The formal definition of a Turing machine, Examples of Turing machines - Turing machines as language acceptors, Turing machines as computers of functions, Variants of Turing Machines (Proofs for equivalence with basic model not expected), Recursive and recursively enumerable languages Chomskian hierarchy, Linear bounded automaton as a restricted TM. Computability (Kozen) Church Turing thesis, Encoding of TMs, Universal Machine and Diagonalization, Reductions, Decidable and Undecidable Problems, Halting problem, Post Correspondence Problem and the proofs for their undecidability. 	11

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/	Internal Examination-1	Internal Examination- 2	Total
	Microproject	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Classify formal languages into regular, context-free, context-sensitive, and unrestricted languages.	K2
CO2	Develop finite state automata, regular grammar, and regular expression.	К3
CO3	Model push-down automata and context-free grammar representations for context-free languages.	К3
CO4	Construct Turing Machines to accept recursive and recursively enumerable languages.	К3
C05	Describe the notions of decidability and undecidability of problems, the Halting problem.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3	3								3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	An Introduction to Formal Languages and Automata	Peter Linz and Susan H. Rodger	Jones and Bartlett Publishers, Inc	7/e, 2022			
2	Introduction to Automata Theory Languages And Computation	John E.Hopcroft, Jeffrey D.Ullman	Rainbow Book Distributiors	3/e, 2015			
3	Automata and Computability	Dexter C. Kozen	Springer	1/e,2007			

	Reference Books						
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year			
1	Introduction to the Theory of Computation	Michael Sipser	Cengage India Private Limited	3/e, 2014			
2	Introduction to Languages and the Theory of Computation	John C Martin	McGraw-Hill Education	4/e, 2010			
3	Theory of Computation: A Problem-Solving Approach	Kavi Mahesh	Wiley	1/e, 2012			
4	Elements of the Theory of Computation	Harry R. Lewis, Christos Papadimitriou	Pearson Education	2/e, 2015			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049				
2	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049				
3	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049				
4	https://archive.nptel.ac.in/courses/106/104/106104148/ https://nptel.ac.in/courses/106106049				

DATA STRUCTURES AND ALGORITHMS

(Common to CS/CA/CM/CD/CR/AI/AM/AD/CB/CN/CC/CU/CI/CG)

Course Code	PCCST303	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	UCEST105	Course Type	Theory

Course Objectives:

- 1. To provide the learner a comprehensive understanding of data structures and algorithms.
- **2.** To prepare them for advanced studies or professional work in computer science and related fields.

SYLLABUS

Module No.	Syllabus Description				
1	Basic Concepts of Data Structures Definitions; Data Abstraction; Performance Analysis - Time & Space Complexity, Asymptotic Notations; Polynomial representation using Arrays, Sparse matrix (<i>Tuple representation</i>); Stacks and Queues - Stacks, Multi- Stacks, Queues, Circular Queues, Double Ended Queues; Evaluation of Expressions- Infix to Postfix, Evaluating Postfix Expressions.	11			
2	Linked List and Memory Management Singly Linked List - Operations on Linked List, Stacks and Queues using Linked List, Polynomial representation using Linked List; Doubly Linked List; Circular Linked List; Memory allocation - First-fit, Best-fit, and Worst-fit allocation schemes; Garbage collection and compaction.	11			

	Trees and Graphs	
	Trees :- Representation Of Trees; Binary Trees - Types and Properties, Binary	
	Tree Representation, Tree Operations, Tree Traversals; Expression Trees;	
3	Binary Search Trees - Binary Search Tree Operations; Binary Heaps - Binary	11
	Heap Operations, Priority Queue.	
	Graphs :- Definitions; Representation of Graphs; Depth First Search and	
	Breadth First Search; Applications of Graphs - Single Source All Destination.	
	Sorting and Searching	
	Sorting Techniques :- Selection Sort, Insertion Sort, Quick Sort, Merge Sort,	
4	Heap Sort, Radix Sort.	11
-	Searching Techniques :- Linear Search, Binary Search, Hashing - Hashing	11
	functions : Mid square, Division, Folding, Digit Analysis; Collision Resolution	
	: Linear probing, Quadratic Probing, Double hashing, Open hashing.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment/	Internal	Internal	
Attendance	Microproject	Examination-1 (Written)	Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify appropriate data structures for solving real world problems.	К3
CO2	Describe and implement linear data structures such as arrays, linked lists, stacks, and queues.	К3
CO3	Describe and Implement non linear data structures such as trees and graphs.	К3
CO4	Select appropriate searching and sorting algorithms to be used in specific circumstances.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities press,	2/e, 2007			
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	PHI	3/e, 2009			

	Re	ference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003
3	Introduction to Data Structures with Applications	Tremblay J. P. and P. G. Sorenson	Tata McGraw Hill.	2/e, 2017
4	Theory and Problems of Data Structures	Lipschuts S.	Schaum's Series	2/e, 2014

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/106102064					
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/					

OBJECT ORIENTED PROGRAMMING

(Common to CS/CA/CD/AM/CB/CN/CU/CG)

Course Code	PBCST304	CIE Marks	60
Teaching Hours/Week (L:T:P:R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To teach the core object-oriented principles such as abstraction, encapsulation, inheritance, and polymorphism, robust error-handling using exception mechanisms to ensure program reliability.
- 2. To equip the learner to develop object oriented programs encompassing fundamental structures, environments, and the effective utilization of data types, arrays, strings, operators, and control statements for program flow in Java.
- **3.** To enable the learner to design and develop event-driven graphical user interface (GUI) database applications using Swing and database connection components.

Module	Syllabus Description			
No.	Syllabus Description			
1	Introduction to Java :- Structure of a simple java program; Java programming Environment and Runtime Environment (Command Line & IDE); Java compiler; Java Virtual Machine; Primitive Data types and Wrapper Types; Casting and Autoboxing; Arrays; Strings; Vector class; Operators - Arithmetic, Bitwise, Relational, Boolean Logical, Assignment, Conditional (Ternary); Operator Precedence; Control Statements - Selection Statements, Iteration Statements and Jump Statements; Functions; Command Line Arguments; Variable Length Arguments; Classes; Abstract Classes; Interfaces. [Use proper naming	10		
	conventions]			

OOP Concepts :- Data abstraction, encapsulation, inheritance, polymorphism, Procedural and object oriented programming paradigm; Microservices. Object Oriented Programming in Java :- Declaring Objects; Object Reference; Introduction to Methods; Constructors; Access Modifiers; this keyword. Polymorphism :- Method Overloading, Using Objects as Parameters, Returning Objects, Recursion. Static Members, Final Variables, Inner Classes. Butter and the super class, Sub Class, Types of Inheritance, The super keyword, protected Members, Calling Order of Constructors. 8 Method Overriding, Dynamic Method Dispatch, Using final with Inheritance. Packages and Interfaces - Packages. Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, references, extending interface(s). 9 Station and finally, Java Built-in Exceptions, Unchecked Exceptions, Introduction to design patterns in Java : Singleton and Adaptor. 9 Atoms, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. 9 String fundamentals - Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Svings, Swing Layout Managers, Exploring Svings-JFrame, JLabel, The Swing Buttons, JTextField. 10 Event handling - Event Handling Mechanisms, Delegation Event Model, Event Classes, of Events, Event Listener Interfaces, Using the Delegation Event Model. 10			
object oriented programming paradigm; Microservices. Object Oriented Programming in Java :- Declaring Objects; Object Reference; Introduction to Methods; Constructors; Access Modifiers; <i>this</i> keyword. Polymorphism :- Method Overloading, Using Objects as Parameters, Returning Objects, Recursion. Static Members, Final Variables, Inner Classes. 8 Inheritance - Super Class, Sub Class, Types of Inheritance, The <i>super</i> keyword, protected Members, Calling Order of Constructors. Method Overriding, Dynamic Method Dispatch, Using <i>final</i> with Inheritance. 8 Packages and Interfaces - Packages. 9 Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interface(s). 9 Exception Handling - Checked Exceptions, Unchecked Exceptions, <i>try</i> Block and <i>catch</i> Clause, Multiple catch Clauses, Nested <i>try</i> Statements, <i>throw, throws ant finally</i> , Java Built-in Exception, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. 9 SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) 10 4 Kevent handling - Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 10		OOP Concepts :-	
Object Oriented Programming in Java :- Declaring Objects; Object Reference; Introduction to Methods; Constructors; Access Modifiers; <i>this</i> keyword. Polymorphism :- Method Overloading, Using Objects as Parameters, Returning Objects, Recursion. Polymorphism :- Method Overloading, Using Objects as Parameters, Returning Objects, Recursion. 8 Inheritance - Super Class, Sub Class, Types of Inheritance, The <i>super</i> keyword, protected Members, Calling Order of Constructors. Method Overriding, Dynamic Method Dispatch, Using <i>final</i> with Inheritance. 8 Packages and Interfaces - Packages. Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s). 9 Stock and <i>catch</i> Clause, Multiple catch Clauses, Nested <i>try</i> Statements, <i>throw, throws and finally</i> , Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. 9 SOLID Principles in Java (https://www.javatpoint.com/solid-principles- java) 5 10 4 Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons, JTextField. 10 Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 10		Data abstraction, encapsulation, inheritance, polymorphism, Procedural and	
Declaring Objects; Object Reference; Introduction to Methods; Constructors; Access Modifiers; <i>this</i> keyword. 90ymorphism :- Method Overloading, Using Objects as Parameters, Returning Objects, Recursion. 90ymorphism :- Method Overloading, Using Objects as Parameters, Returning Objects, Recursion. 8 Inheritance - Super Class, Sub Class, Types of Inheritance, The <i>super</i> keyword, protected Members, Calling Order of Constructors. Method Overriding, Dynamic Method Dispatch, Using <i>final</i> with Inheritance. 8 Packages and Interfaces - Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interface(s). 9 Exception Handling - Checked Exceptions, Unchecked Exceptions, <i>try</i> Block and <i>catch</i> Clause, Multiple catch Clauses, Nested <i>try</i> Statements, <i>throw, throws</i> and <i>finally</i> , Java Built-in Exception, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. 9 SOLID Principles in Java (https://www.javatpoint.com/solid-principles- java) 10 4 Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons, JTextField. Event Handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 10		object oriented programming paradigm; Microservices.	
Access Modifiers; this keyword. Polymorphism :- Method Overloading, Using Objects as Parameters, Returning Objects, Recursion. Static Members, Final Variables, Inner Classes. Inheritance - Super Class, Sub Class, Types of Inheritance, The super keyword, protected Members, Calling Order of Constructors. Method Overriding, Dynamic Method Dispatch, Using final with Inheritance. Packages and Interfaces - Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interface(s). Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exception, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons, JTextField. 4 Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.		Object Oriented Programming in Java :-	
Polymorphism :- Method Overloading, Using Objects as Parameters, Returning Objects, Recursion. 8 2 Static Members, Final Variables, Inner Classes. Inheritance - Super Class, Sub Class, Types of Inheritance, The super keyword, protected Members, Calling Order of Constructors. Method Overriding, Dynamic Method Dispatch, Using final with Inheritance. 8 7 Packages and Interfaces - Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages. 9 3 Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s). 9 8 Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. 9 SOLID Principles in Java (https://www.javatpoint.com/solid-principles- java) 10 4 Keyen Chanding - Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 10		Declaring Objects; Object Reference; Introduction to Methods; Constructors;	
Method Overloading, Using Objects as Parameters, Returning Objects, Recursion. 8 Static Members, Final Variables, Inner Classes. Inheritance - Super Class, Sub Class, Types of Inheritance, The super keyword, protected Members, Calling Order of Constructors. 8 Method Overriding, Dynamic Method Dispatch, Using final with Inheritance. 9 Packages and Interfaces – Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interface(s). 9 Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. 9 SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) 10 4 Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. 10 Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 10		Access Modifiers; <i>this</i> keyword.	
Recursion. Static Members, Final Variables, Inner Classes. 8 Inheritance - Super Class, Sub Class, Types of Inheritance, The super keyword, protected Members, Calling Order of Constructors. 8 Method Overriding, Dynamic Method Dispatch, Using final with Inheritance. 9 Packages and Interfaces - Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages. 9 Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s). 9 Exception Handling - Checked Exceptions, Unchecked Exceptions, Introduction to design patterns in Java : Singleton and Adaptor. 9 SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) Swings fundamentals - Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons, JTextField. 10 4 Event handling - Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 10		Polymorphism :-	
2 Static Members, Final Variables, Inner Classes. 8 1 Inheritance - Super Class, Sub Class, Types of Inheritance, The super keyword, protected Members, Calling Order of Constructors. 8 Method Overriding, Dynamic Method Dispatch, Using final with Inheritance. 9 Packages and Interfaces - Packages. Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s). 9 Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. 9 SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) 9 Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. 10 4 Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 10		Method Overloading, Using Objects as Parameters, Returning Objects,	
2 Inheritance - Super Class, Sub Class, Types of Inheritance, The super keyword, protected Members, Calling Order of Constructors. Method Overriding, Dynamic Method Dispatch, Using final with Inheritance. 9 Packages and Interfaces – Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s). 9 3 Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. 9 4 SolLID Principles in Java (https://www.javatpoint.com/solid-principles-java) 10 4 Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons, JTextField. 10 4 Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.		Recursion.	
Inheritance - Super Class, Sub Class, Types of Inheritance, The super keyword, protected Members, Calling Order of Constructors. Method Overriding, Dynamic Method Dispatch, Using final with Inheritance. Packages and Interfaces - Packages. Interfaces - Defining a Package, CLASSPATH, Access Protection, Importing Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interface(s). Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons, JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.	•	Static Members, Final Variables, Inner Classes.	0
Method Overriding, Dynamic Method Dispatch, Using <i>final</i> with Inheritance. Packages and Interfaces – Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s). Exception Handling - Checked Exceptions, Unchecked Exceptions, <i>try</i> Block and <i>catch</i> Clause, Multiple catch Clauses, Nested <i>try</i> Statements, <i>throw, throws</i> and <i>finally</i> , Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) Swings fundamentals - Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. Event handling - Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.	2	Inheritance - Super Class, Sub Class, Types of Inheritance, The super	8
Inheritance. Packages and Interfaces – Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages. Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s). 9 Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. 9 Introduction to design patterns in Java : Singleton and Adaptor. SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) 9 4 Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. 10 4 Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 10		keyword, protected Members, Calling Order of Constructors.	
Packages and Interfaces - Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s).93Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor.93SOLID Principles in Java (https://www.javatpoint.com/solid-principles- java) Swings fundamentals - Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons, JTextField.104Event handling - Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.10		Method Overriding, Dynamic Method Dispatch, Using <i>final</i> with	
Packages - Defining a Package, CLASSPATH, Access Protection, Importing Packages. Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface 		Inheritance.	
Packages.Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s).9Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor.9SOLID Principles in Java (https://www.javatpoint.com/solid-principles- java)9Swings fundamentals - Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons, JTextField.104Event handling - Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.10		Packages and Interfaces –	
3Interfaces - Interfaces v/s Abstract classes, defining an interface, implementing interfaces, accessing implementations through interface references, extending interface(s).93Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor.94SOLID Principles in Java (https://www.javatpoint.com/solid-principles- java) Swings fundamentals - Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons, JTextField.104Event handling - Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.10		Packages - Defining a Package, CLASSPATH, Access Protection, Importing	
 implementing interfaces, accessing implementations through interface references, extending interface(s). Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 		Packages.	
3 references, extending interface(s). Exception Handling - Checked Exceptions, Unchecked Exceptions, try Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.		Interfaces - Interfaces v/s Abstract classes, defining an interface,	
Image: a constraint of the second s	2	implementing interfaces, accessing implementations through interface	0
4 Block and catch Clause, Multiple catch Clauses, Nested try Statements, throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor. SOLID Principles in Java (https://www.javatpoint.com/solid-principles-java) Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.	3	references, extending interface(s).	9
throw, throws and finally, Java Built-in Exceptions, Custom Exceptions. Introduction to design patterns in Java : Singleton and Adaptor.SOLID Principles in Java (https://www.javatpoint.com/solid-principles- java)Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField.Image: Event Handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.		Exception Handling - Checked Exceptions, Unchecked Exceptions, try	
Introduction to design patterns in Java : Singleton and Adaptor.SOLID Principles in Java (https://www.javatpoint.com/solid-principles- java)Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField.Image: Second Science		Block and catch Clause, Multiple catch Clauses, Nested try Statements,	
4 Solid Principles in Java (https://www.javatpoint.com/solid-principles-java) Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.		throw, throws and finally, Java Built-in Exceptions, Custom Exceptions.	
 java) Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 		Introduction to design patterns in Java : Singleton and Adaptor.	
 Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing Key Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 		SOLID Principles in Java (https://www.javatpoint.com/solid-principles-	
 Features, Model View Controller (MVC), Swing Controls, Components and Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model. 		java)	
4 Containers, Swing Packages, Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.		Swings fundamentals - Overview of AWT, Swing v/s AWT, Swing Key	
4 Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.		Features, Model View Controller (MVC), Swing Controls, Components and	
4 JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.		Containers, Swing Packages, Event Handling in Swings, Swing Layout	
JTextField. Event handling – Event Handling Mechanisms, Delegation Event Model, Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.	4	Managers, Exploring Swings-JFrame, JLabel, The Swing Buttons,	10
Event Classes, Sources of Events, Event Listener Interfaces, Using the Delegation Event Model.	4	JTextField.	10
Delegation Event Model.		Event handling - Event Handling Mechanisms, Delegation Event Model,	
		Event Classes, Sources of Events, Event Listener Interfaces, Using the	
Developing Database Applications using JDBC – JDBC overview, Types,		Delegation Event Model.	
		Developing Database Applications using JDBC – JDBC overview, Types,	
Steps, Common JDBC Components, Connection Establishment, SQL		Steps, Common JDBC Components, Connection Establishment, SQL	

Fundam	entals [For projects only] - Creating and Executing basic SQL
Queries,	Working with Result Set, Performing CRUD Operations with
JDBC.	

Suggestion on Project Topics

Student should Identify a topic to be implemented as project having the following nature

- i. It must accept a considerable amount of information from the user for processing.
- *ii. It must have a considerable amount of data to be stored permanently within the computer as plain files / using databases..*
- *iii.* It must process the user provided data and the stored data to generate some output to be displayed to the user.

Examples : -

1. Design and implement the Circulation function in a Library Management System using Object-Oriented Programming (OOP) principles in Java and limited use of SQL. The system should manage the operations of a library, such as book & user management, borrowing and returning books.

Requirements

- I. Class Design
 - Book: Attributes like title, author, ISBN, genre, and status (available/borrowed).
 - User: Attributes like user ID, name, contact information, and a list of borrowed books.
 - Library: Attributes like a list of books and a list of users.
 - Librarian: Inherits from User, with additional functionalities like adding/removing books and managing users.
 - BorrowTransaction: Attributes like transaction ID, book, user, borrow date, and return date
- II. Functionalities
 - a. Book Management:
 - Add, remove, and update book details.
 - Search books by title, author, ISBN, and genre.
 - b. User Management:
 - Register new users.
 - Search users by user ID and name.
 - c. Borrowing and Returning:

- Borrow a book: Check if the book is available and if the user can borrow more books.
- Return a book: Update the book's status and remove it from the user's borrowed list.
- III. Deliverables
 - 1. Design Document: Describe the classes, their attributes, methods and relationships.
 - 2. Source Code: Well-documented Java code implementing the described functionalities.
 - 3. User Manual: Instructions on how to set up, run and use the system.
 - 4. Test Cases: A suite of test cases demonstrating the functionality of the system.
- Design and implement an Online Payment Processing System using Object-Oriented Programming(OOP) principles in Java, with a focus on dynamic polymorphism. The system should support different types of payment methods and demonstrate polymorphism in processing payments.

Requirements

- a. Class Design
 - Payment: An abstract base class with common attributes and an abstract method for processing payments.
 - CreditCardPayment: Inherits from Payment, with specific implementation for processing credit card payments.
 - PayPalPayment: Inherits from Payment, with specific implementation for processing PayPal payments.
 - BankTransferPayment: Inherits from Payment, with specific implementation for processing bank transfer payments.
 - PaymentProcessor: A class to manage and process different types of payments.
- b. Functionalities
 - Add Payment Method: Add new payment methods (CreditCardPayment, PayPalPayment, BankTransferPayment) to the system.
 - Process Payment: Demonstrate dynamic polymorphism by processing payments using different methods.
- c. Deliverables
 - Design Document: Describe the classes, their attributes, methods and relationships.
 - Source Code: Well-documented Java code implementing the described functionalities.

- User Manual: Instructions on how to set up, run and use the system.
- Test Cases: A suite of test cases demonstrating the functionality of the system.

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each module,	
module.	out of which 1 question should be answered.	
• Total of 8 Questions,	• Each question can have a maximum of 2	40
each carrying 2 marks	subdivisions.	40
	• Each question carries 6 marks.	
(8x2 =16 marks) (4x6 = 24 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the process of writing, compiling, and executing basic Java programs, including their structure and components, to demonstrate proficiency.	К2
CO2	Utilize object-oriented programming principles in the design and implementation of Java applications.	К3
CO3	Develop and manage Java packages and interfaces, enhancing code modularity and reusability.	К3
CO4	Implement error handling using Java's exception mechanisms and leverage interfaces for modular applications.	К3
CO5	Develop event-driven Java GUI applications with database connectivity using Swing and JDBC.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3		3							3
CO4	3	3	3		3							3
CO5	3	3	3		3							3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Java: The Complete Reference	Herbert Schildt	Tata McGraw Hill	13/e, 2024				
2	Introduction to Java Programming, Comprehensive Version	Y Daniel Liang	Pearson	10/e, 2014				
3	Head First Design Patterns	Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra	O'Reilly Media	1/e, 2004				

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Head First Java: A Brain Friendly Guide	Kathy Sierra & Bert Bates	O'Reilly	3/e, 2022			
2	JAVA TM for Programmers	Paul Deitel	PHI	11/e, 2018			
3	Clean Code : A Handbook of Agile Software Craftsmanship	Robert C. Martin	Prentice Hall	1/e, 2008			
4	Programming with Java	E Balagurusamy	McGraw Hill	6/e, 2019			
5	Java For Dummies	Barry A. Burd	Wiley	8/e, 2022			
6	Effective Java	Joshua Bloch	Pearson	3/e, 2018			

	Video Links (NPTEL, SWAYAM)			
Module No.	Link ID			
1	https://nptel.ac.in/courses/106105191 (Lecture no: 9, 10, 1, 2, 3, 4)			
2	https://nptel.ac.in/courses/106105191 (Lecture no: 1, 7, 8, 11, 12, 13, 14, 15, 16)			
3	https://nptel.ac.in/courses/106105191 (Lecture no: 17, 18, 19, 20, 21, 22, 23, 24, 25, 26)			
4	https://nptel.ac.in/courses/106105191 (Lecture no: 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55)			

L: Lecture	L: Lecture R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

PBL Course Elements

Sl. No	Evaluation for	Allotted
		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

Assessment and Evaluation for Project Activity

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

DIGITAL ELECTRONICS AND LOGIC DESIGN

Course Code	GAEST305	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

(Common to Group A)

Course Objectives:

- 1. To familiarize the basic concepts of Boolean algebra and digital systems.
- 2. To enable the learner to design simple combinational and sequential logic circuits which is essential in understanding organization & design of computer systems.

SYLLABUS

Module No.	Syllabus Description		
1	 Introduction to digital Systems :- Digital abstraction Number Systems – Binary, Hexadecimal, grouping bits, Base conversion; Binary Arithmetic – Addition and subtraction, Unsigned and Signed numbers; Fixed-Point Number Systems; Floating-Point Number Systems Basic gates- Operation of a Logic circuit; Buffer; Gates - Inverter, AND gate, OR gate, NOR gate, NAND gate, XOR gate, XNOR gate; Digital circuit operation - logic levels, output dc specifications, input dc specifications, noise margins, power supplies; Driving loads - driving other gates, resistive loads and LEDs. Verilog (Part 1) :- HDL Abstraction; Modern digital design flow - Verilog constructs: data types, 	11	

	Combinational Logic Design: -	
	Boolean Algebra - Operations, Axioms, Theorems; Combinational logic	
	analysis - Canonical SOP and POS, Minterm and Maxterm equivalence; Logic	
	minimization - Algebraic minimization, K-map minimization, Dont cares, Code	
2	convertors.	11
	Modeling concurrent functionality in Verilog:-	
	Continuous assignment - Continuous Assignment with logical operators,	
	Continuous assignment with conditional operators, Continuous assignment with	
	delay.	
	MSI Logic and Digital Building Blocks	
	MSI logic - Decoders (One-Hot decoder, 7 segment display decoder),	
2	Encoders, Multiplexers, Demultiplexers; Digital Building Blocks - Arithmetic	8
3	Circuits - Half adder, Full adder, half subtractor, full subtractor; Comparators.	0
	Structural design and hierarchy - lower level module instantiation, gate level	
	primitives, user defined primitives, adding delay to primitives.	
	Sequential Logic Design :- Latches and Flip-Flops- SR latch, SR latch with	
	enable, JK flipflop, D flipflop, Register Enabled Flip-Flop, Resettable Flip-	
	Flop. Sequential logic timing considerations; Common circuits based on	
	sequential storage devices - toggle flop clock divider, asynchronous ripple	
	counter, shift register.	
4	Finite State Machines :-	14
	Finite State Machines - logic synthesis for an FSM, FSM design process and	
	design examples; Synchronous Sequential Circuits - Counters;	
	Verilog (Part 2) : -	
	Procedural assignment; Conditional Programming constructs; Test benches;	
	Modeling a D flipflop in Verilog; Modeling an FSM in Verilog.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out of	
• Total of 8 Questions, each	which 1 question should be answered.	
carrying 3 marks.	• Each question can have a maximum of 3 subdivisions.	60
	(4x9 = 36 marks)	
(8x3 =24 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Summarize the basic concept of different number systems and perform conversion and arithmetic operations between different bases.	K2
CO2	Interpret a combinational logic circuit to determine its logic expression, truth table, and timing information and to synthesize a minimal logic circuit through algebraic manipulation or with a Karnaugh map.	K2
CO3	Illustrate the fundamental role of hardware description languages in modern digital design and be able to develop the hardware models for different digital circuits.	К3
CO4	Develop MSI logic circuits using both the classical digital design approach and the modern HDL-based approach.	К3
C05	Develop common circuits based on sequential storage devices including counter, shift registers and a finite state machine using the classical digital design approach and an HDL-based structural approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Introduction to Logic Circuits & Logic Design with Verilog	Brock J. LaMeres	Springer International Publishing	2/e, 2017				
2	Digital Design and Computer Architecture - RISC-V Edition	Sarah L. Harris, David Harris	Morgan Kaufmann	1/e, 2022				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Digital Design with an Introduction to the Verilog HDL, VHDL, and System Verilog	M Morris Mano, Michael D Ciletti	Pearson	6/e, 2018				
2	Digital Fundamentals	Thomas Floyd	Pearson	11/e, 2015				
3	Fundamentals of Digital Logic with Verilog Design	Stephen Brown, Zvonko Vranesic	McGrawHill	3/e, 2014				
4	Switching and Finite Automata Theory	Zvi Kohavi Niraj K. Jha	Cambridge University Press	3/e, 2010				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/117105080						
2	https://onlinecourses.nptel.ac.in/noc21_ee39/						
3	https://onlinecourses.nptel.ac.in/noc24_cs61/						

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- **3.** Deliver the basic concepts of Value Engineering.

SYLLABUS

Module No.	Syllabus Description				
1	Basic Economics Concepts - Basic economic problems – Production Possibility Curve – Utility – Law of diminishing marginal utility – Law of Demand - Law of supply – Elasticity - measurement of elasticity and its applications – Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion – Economies of Scale – Internal and External Economies – Cobb-Douglas Production Function	6			
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts Firms and their objectives – Types of firms – Markets - Perfect Competition	6			

	– Monopoly - Monopolistic Competition - Oligopoly (features and equilibrium of a firm)	
3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators- SENSEX and NIFTY	6
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost- Benefit Analysis - Capital Budgeting - Process planning	6

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/	Internal Examination-1	Internal Examination- 2	Total	
	Microproject	(Written)	(Written)		
10	15	12.5	12.5	50	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

	Part A		Part B	Total
•	Minimum 1 and Maximum	٠	2 questions will be given from each module, out	
	2 Questions from each		of which 1 question should be answered.	
	module.	•	Each question can have a maximum of 2 sub	50
•	Total of 6 Questions, each		divisions.	50
	carrying 3 marks	٠	Each question carries 8 marks.	
	(6x3 =18marks)		(4x8 = 32 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
	Understand the fundamentals of various economic issues using laws	K2
CO1	and learn the concepts of demand, supply, elasticity and production	
	function.	
	Develop decision making capability by applying concepts relating to	К3
CO2	costs and revenue, and acquire knowledge regarding the functioning of	
	firms in different market situations.	
CO3	Outline the macroeconomic principles of monetary and fiscal systems,	K2
COJ	national income and stock market.	
	Make use of the possibilities of value analysis and engineering, and	К3
CO4	solve simple business problems using break even analysis, cost benefit	
	analysis and capital budgeting techniques.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015			
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	PHI	1966			
3	Engineering Economics	R. Paneerselvam	PHI	2012			

Reference Books							
Sl. No Title of the Book		Name of the Author/s	Name of the Publisher	Edition and Year			
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition			
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011			
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002			
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001			

SEMESTER S3/S4

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** Equip with the knowledge and skills to make ethical decisions and implement gender-sensitive practices in their professional lives.
- **2.** Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

Module No.	Syllabus Description	Contact Hours
1	Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue, Respect for others, Profession and Professionalism , Ingenuity, diligence and responsibility, Integrity in design, development, and research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution -Data, information, and knowledge, Cybertrust and cybersecurity, Data collection & management, High technologies: connecting people and places -accessibility and social impacts, Managing conflict , Collective bargaining, Confidentiality , Role of confidentiality in moral integrity, Codes of Ethics .	6

SYLLABUS

	Basic concepts in Gender Studies - sex, gender, sexuality, gender	
	spectrum: beyond the binary, gender identity, gender expression, gender	
	stereotypes, Gender disparity and discrimination in education,	
	employment and everyday life, History of women in Science & Technology,	
	Gendered technologies & innovations, Ethical values and practices in	
	connection with gender - equity, diversity & gender justice, Gender policy	
	and women/transgender empowerment initiatives.	
	and women/transgender empowerment intratives.	
	Introduction to Environmental Ethics: Definition, importance and	
	historical development of environmental ethics, key philosophical theories	
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering	
	Principles: Definition and scope, triple bottom line (economic, social and	
	environmental sustainability), life cycle analysis and sustainability metrics.	
2	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6
	Importance of biodiversity and its conservation, Human impact on	
	ecosystems and biodiversity loss, An overview of various ecosystems in	
	Kerala/India, and its significance. Landscape and Urban Ecology:	
	Principles of landscape ecology, Urbanization and its environmental impact,	
	Sustainable urban planning and green infrastructure.	
	Hydrology and Water Management: Basics of hydrology and water cycle,	
	Water scarcity and pollution issues, Sustainable water management practices,	
	Environmental flow, disruptions and disasters. Zero Waste Concepts and	
	Practices: Definition of zero waste and its principles, Strategies for waste	
	reduction, reuse, reduce and recycling, Case studies of successful zero waste	
	initiatives. Circular Economy and Degrowth: Introduction to the circular	
3	economy model, Differences between linear and circular economies,	6
	degrowth principles, Strategies for implementing circular economy practices	
	and degrowth principles in engineering. Mobility and Sustainable	
	Transportation: Impacts of transportation on the environment and climate,	
	Basic tenets of a Sustainable Transportation design, Sustainable urban	
	mobility solutions, Integrated mobility systems, E-Mobility, Existing and	
	upcoming models of sustainable mobility solutions.	

Renewable Energy and Sustainable Technologies: Overview of renewable energy sources (solar, wind, hydro, biomass), Sustainable technologies in energy production and consumption, Challenges and opportunities in renewable energy adoption. Climate Change and Engineering Solutions: Basics of climate change science, Impact of climate change on natural and human systems, Kerala/India and the Climate crisis, Engineering solutions to mitigate, adapt and build resilience to climate change. Environmental Policies and Regulations: Overview of key environmental policies and regulations (national and international), Role of engineers in policy implementation and compliance, Ethical considerations in environmental policy-making. Case Studies and Future Directions: Analysis of real-world case studies, Emerging trends and future directions in environmental ethics and sustainability, Discussion on the role of engineers in promoting a sustainable future.

6

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

SI. No.	Item	Particulars	Group/I ndividua l (G/I)	Marks
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	Ι	5
2	Micro project	1 a) Perform an Engineering Ethics Case Study analysis and prepare a report	G	8
	(Detailed documentation of	1 b) Conduct a literature survey on 'Code of Ethics for Engineers' and prepare a sample code of ethics		
	the project, including methodologies,	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	findings, and reflections)	3. Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
		Total Marks		50

*Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- Application of Concepts: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- **Presentation Skills**: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	К5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	К4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.

- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).

• Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

SEMESTER S3

DATA STRUCTURES LAB

(Common to CS/CA/CM/CD/CR/AI/AM/AD/CB/CN/CC/CU/CI/CG)

Course Code	PCCSL307	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST204	Course Type	Lab

Course Objectives :

1. To give practical experience for learners on implementing different linear and non linear data structures, and algorithms for searching and sorting.

Expt. No.	Experiments
1	Find the sum of two sparse polynomials using arrays
2	Find the transpose of a sparse matrix and sum of two sparse matrices.
3	Convert infix expression to postfix (or prefix) and then evaluate using stack,
4	Implement Queue, DEQUEUE, and Circular Queue using arrays.
_	Implement backward and forward navigation of visited web pages in a web browser (i.e.
5	back and forward buttons) using doubly linked list operations.
6	Implement addition and multiplication of polynomials using singly linked lists.
-	Create a binary tree for a given simple arithmetic expression and find the prefix / postfix
7	equivalent.
8	Implement a dictionary of word-meaning pairs using binary search trees.
9	Find the shortest distance of every cell from a landmine inside a maze.
	We have three containers whose sizes are 10 litres, 7 litres, and 4 litres, respectively. The
	7-litre and 4-litre containers start out full of water, but the 10-litre container is initially
	empty. We are allowed one type of operation: pouring the contents of one container into
10	another, stopping only when the source container is empty or the destination container is
	full. We want to know if there is a sequence of pourings that leaves exactly 2 litres in the 7
	or 4-litre container. Model this as a graph problem and solve.

11	Implement the find and replace feature in a text editor.
12	Given an array of sorted items, implement an efficient algorithm to search for specific
	item in the array.
13	Implement Bubble sort, Insertion Sort, Radix sort, Quick Sort, and Merge Sort and
	compare the number of steps involved.
	The General post office wishes to give preferential treatment to its customers. They have
	identified the customer categories as Defence personnel, Differently abled, Senior citizen,
14	Ordinary. The customers are to be given preference in the decreasing order - Differently
	abled, Senior citizen, Defence personnel, Normal person. Generate the possible sequence
	of completion.
	Implement a spell checker using a hash table to store a dictionary of words for fast
15	lookup. Implement functions to check if a word is valid and to suggest corrections
	for misspelled words.
16	Simulation of a basic memory allocator and garbage collector using doubly linked
10	list
	The CSE dept is organizing a tech fest with so many exciting events. By participating
17	in an event, you can claim for activity points as stipulated by KTU. Each event i gives
17	you A[i] activity points where A is an array. If you are not allowed to participate in more
	than k events, what's the max number of points that you can earn?
	Merge K sorted lists into a single sorted list using a heap. Use a min-heap to keep track of
18	the smallest element from each list. Repeatedly extract the smallest element and insert the
	next element from the corresponding list into the heap until all lists are merged.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with valid			
Preparatory	Execution of work/	inference/	Viva	Dered	T-4-1
work/Design/	troubleshooting/	Quality of	voce	Record	Total
Algorithm	Programming	Output			
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

• Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Model a real world problem using suitable data structure and implement the solution.	К3
CO2	Compare efficiency of different data structures in terms of time and space complexity.	K4
CO3	Evaluate the time complexities of various searching and sorting algorithms.	K5
CO4	Differentiate static and dynamic data structures in terms of their advantages and application.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3				3				3
CO2	3	3	3	3				3				3
CO3	3	3	3	3				3				3
CO4	3	3	3	3				3				3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books									
Sl. No	Title of the BookName of the Author/s		Title of the Book Name of the Author/s		Title of the Book Name of the Author/s		o Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities Press,	2/e, 2007						
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	PHI	3/e, 2009						

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018						
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003						
3	Introduction to Data Structures with Applications	Tremblay J. P., P. G. Sorenson	Tata McGraw Hill.	2/e, 2017						
4	Theory and Problems of Data Structures	Lipschutz S.	Schaum's Series	2/e, 2014						

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://nptel.ac.in/courses/106102064								
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/								

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

• Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.

• Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
 - Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
 - Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
 - Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 3

PYTHON AND STATISTICAL MODELING LAB (Common to AD/CD/CR)

Course Code	PCCDL308	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

1. The course aims to familiarize students with basic Python concepts and data structures, model graphical representation of data, measures of central tendency and measures of dispersion. The course will also introduce students to use python in solving problems based on statistical distributions, regression analysis and correlation tests

Expt. No.	Experiments
1	Write a program to find the largest of three numbers.
2	Write a program to print the multiplication table of a number n.
3	Write a program to find Surface area and volume of a cylinder using function.
4	Write a program to replace a word by another word in a sentence.
5	Write a program to confirm the validity of an email id by verifying its format.
6	Write a program to remove every occurrence of a number from a list.
7	Write a program to add two matrices.
8	Write a program to read a tuple of numbers and print even tuple and odd tuple.
9	Create a dictionary with a set of book title and corresponding stock. Write a program to update the stock and to add or delete books.
10	A set of numbers are stored in a file. Write a program to print the prime numbers among them.
11	Write a program to count the number of words, sentences, upper case letters, lowercase letters and special symbols in a text stored in file.

12	Plot a graph $y = f(x)$									
13	Africa; 10.4	f the various contine 4 for Asia; 1.9 for Eu on. Draw a bar chart	urope; 9.4 for No	orth America; 3	-	·				
	Draw the l	nistogram of the fo	llowing data:							
14	Heig	ht of student(m)	135 - 140	140 - 145	145-150	150-155]			
	No. o	of students	4	12	16	8	-			
	Table cont	ains population an	d murder rates	(in units of m	urders per 1	00,000 peop	le per yea			
		nt states. Compute			-					
	5	State	Population	Murde	r					
		Alabama	4,779,736	5.7						
		Alaska	710231	5.6						
15		Arizona	6,392,017	4.7						
		Arkansas	2,915,918	5.6						
	•	California	37,253,956	4.4						
	•	Colorado	5,029,196	2.8						
	•	Connecticut	3,574,097	2.4						
]	Delaware	89,924	5.8						
	Calculate	the S.D. and coeffi	cient of variation	on (C.V.) for 1	he followin	g table:				
16	Class:	0-10 10-2	0 20-30	30-40 40-5	50 50-60	60-70	70-80			
	Frequency	: 5 10	20 40	30	20	10 5				
17		omially distributed hat is the probabili		nd a probabili	ty of success	s equal to 0.2	25 at each			
	a) exactly 4	successes b) at leas	t one success							
18										
10	18	If the random v	ariable X follow	ws a Poisson o	listribution	with mean 3	.4, find			

	P(X=6).								
	the higl summa	hest ed rized i	ucation lev	b people were surveyed yel they obtained. The wing table. Are gende	e data that resul	ted from the su	urvey is			
19			High S	chool Bachelors	Masters	Ph.D	Total			
	Fe	male	60	54	46	41	201			
	Ma	ale	40	44	53	57	194			
	То	tal	100	98	99	98	395			
	Calcula	te the	correlation	coefficient of the tw	o variables sho	wn in the table	below.			
	Pers on	Ha nd	Heig ht							
	A	17	150							
20	В	15	154							
	С	19	169							
	D	17	172							
	Е	21	175							
21	Suppose a sample of 16 light trucks is randomly selected off the assembly line. The trucks are driven 1000 miles and the fuel mileage (MPG) of each truck is recorded. It is found that the mean MPG is 22 with a SD equal to 3. The previous model of the light truck got 20 MPG. Conduct a t- test of the null hypothesis at p = 0.05.									
22	The mean productivity rating for all employees at a company was 3.8 on a five- po scale last year. This year you get ratings from a representative sample of fifte employees from the Human Research Management. Do the data from this sam									
23	statistic satisfac	cal ana ction o	lysis softw	equation for predic are. If one knows tha is their systolic bloc te?	t a subject in th	e future has a s	score on job			
 	1									

						34	124							
						23	128							
						19	157							
						43	137							
						56	116							
						47	125							
						32	147							
						16	167							
						55	110							
						25	156							
	18	P(X=6). om sam	ple of :		If the random variable X follows a Poisson distribution with mean 3.4, find P(X=6).A random sample of 395 people were surveyed and each person was asked to report								
			rized ir	n the fo icance?	llowing tab	ole. Are gende	data that resul	1 level depende	rvey is ent at 5%					
	19	summa	rized ir	n the fo icance?	llowing tab				rvey is					
	19	summation summation level of	rized ir	n the fo icance?	llowing tab	ole. Are gende	r and education	1 level depende	rvey is ent at 5%					
	19	summation summation level of	rized ir Fsignifi male	n the foi icance?	llowing tab	ble. Are gende Bachelors	r and education	n level depende	ent at 5%					
19	19	summative of Ferror	rized ir Fsignifi male ale	n the fo icance? High 60	llowing tab	ble. Are gende Bachelors 54	r and education Masters 46	n level depende Ph.D 41	Total					
19	19	summative level of Fer Ma To	rized ir Fsigniff male Ile tal	h the fo icance? High 60 40 100	llowing tab	Bachelors 54 44 98	r and education Masters 46 53	Ph.D 41 57 98	Total 201 194 395					
19	19	summative level of Fer Ma To Calcula	rized ir Fsigniff male ile tal te the o	h the foicance? High 60 40 100 correlat	llowing tab	Bachelors 54 44 98	r and education Masters 46 53 99	Ph.D 41 57 98	Total 201 194 395					
19	19	summative level of Fer Ma To	rized ir Fsigniff male Ile tal	h the fo icance? High 60 40 100	llowing tab	Bachelors 54 44 98	r and education Masters 46 53 99	Ph.D 41 57 98	Total 201 194 395					
19	19	summative of features of the second s	rized ir f signiff male tal tal te the o	h the fo icance? High 60 40 100 correlat Heig	llowing tab	Bachelors 54 44 98	r and education Masters 46 53 99	Ph.D 41 57 98	Total 201 194 395					
19	19	summative of summa	rized ir F signiff male ale tal te the o Ha nd	h the fo icance? Higl 60 40 100 correlat Heig ht 150	llowing tab	Bachelors 54 44 98	r and education Masters 46 53 99	Ph.D 41 57 98	Total 201 194 395					
19		summative of summa	rized ir F signiff male tal te the o Ha nd 17 15	h the fo icance? Higl 60 40 100 correlat Heig ht 150 154	llowing tab	Bachelors 54 44 98	r and education Masters 46 53 99	Ph.D 41 57 98	Total 201 194 395					
19		summative of summa	rized ir F signiff male ale tal te the o Ha nd 17	h the fo icance? Higl 60 40 100 correlat Heig ht 150	llowing tab	Bachelors 54 44 98	r and education Masters 46 53 99	Ph.D 41 57 98	Total 201 194 395					
19		summa level of Fer Ma To Calcula Pers on A B C	rized in F signiff male tal te the o Ha nd 17 15 19	h the fo icance? High 60 40 100 correlat Heig ht 150 154 169	llowing tab	Bachelors 54 44 98	r and education Masters 46 53 99	Ph.D 41 57 98	Total 201 194 395					

	21	Suppose a sample of 16 trucks are driven 1000 n is found that the mean 1 light truck got 20 MPG.	niles and the fuel miles MPG is 22 with a SD	age (MPG) of each equal to 3. The pr	truck is recorded. It revious model of the
	22	The mean productivity r scale last year. This year employees from the Hu provide evidence that en Management is significat and alternative hypothes null hypothesis stated ab	ear you get ratings fr man Research Manag mployee productivity antly higher than in th es for this problem. Us	om a representativ gement. Do the da in the department e company as a w	ve sample of fifteen ta from this sample of Human Resource hole? Write the null
		Obtain the regression eq analysis software. If one 15, what is their systolic estimate?	knows that a subject in	n the future has a so	core on job satisfaction
			Job Satisfaction	Systolic BP	
			34	124	-
			23	128	
	23		19	157	-
			43	133	_
			56	116	-
			47	125	-
			32	147	-
			16	167	1
			55	110	1
			25	156	_
20	18	If the random variable P(X=6).	X follows a Poisson	distribution with	mean 3.4, find
	19	A random sample of 39 the highest education le		-	-

	level of si	ignificance	?						
			gh School	Bachelors	Masters	Ph.D	Total		
	Fema	ale 60		54	46	41	201		
	Male	40		44	53	57	194		
	Total	10	0	98	99	98	395		
	Calculate	the correl	ation coeffi	cient of the two	variables show	wn in the table	below.		
		Ha Heig nd ht	5						
20	A 1	17 150							
	B 1	15 154							
	C 1	19 169							
	D 1	17 172							
	E 2	21 175							
21	trucks are is found t	e driven 1(that the m	000 miles an ean MPG i	trucks is randor nd the fuel mile s 22 with a SD ct a t- test of the	age (MPG) of equal to 3. T	each truck is the previous m	recorded. It		
22	 light truck got 20 MPG. Conduct a t- test of the null hypothesis at p = 0.05 The mean productivity rating for all employees at a company was 3.8 on scale last year. This year you get ratings from a representative sample employees from the Human Research Management. Do the data from provide evidence that employee productivity in the department of Huma Management is significantly higher than in the company as a whole? W and alternative hypotheses for this problem. Use statistical analysis softwa null hypothesis stated above. 								
	Obtain the regression equation for predicting systolic blood pressure from job statistical analysis software. If one knows that a subject in the future has a score on job satisfaction o 15, what is their systolic blood pressure predicted to be? What is the standard error of estimate?								
23			Jo	b Satisfaction	Systolic BP				
				34	124				
				23	128				

						19	157		
						43	133		
						56	116		
						47	125		
						32	147		
						16	167		
						55	110		
						25	156		
	18	If the r P(X=6		n variab	ole X foll	lows a Poisson	n distribution	with mean 3.4	4, find
		the hig	hest eo rized i	lucation n the fo	level the	ey obtained. T	ved and each p he data that re ler and educati	sulted from th	e survey is
	19			High	School	Bachelors	Masters	Ph.D	Total
		Fei	nale	60		54	46	41	201
		Ma	ıle	40		44	53	57	194
		То	tal	100		98	99	98	395
21		Calcula	te the	correlati	on coeffi	cient of the two	o variables sho	wn in the table	below.
		Dong	IIa						
		Pers on	Ha nd	Heig ht					
				-					
	20	on	nd	ht					
	20	on A	nd 17	ht 150					
	20	on A B C	nd 17 15 19	ht 150 154 169					
	20	on A B C D	nd 17 15 19 17	ht 150 154 169 172					
	20	on A B C D E	nd 17 15 19 17 21	ht 150 154 169 172 175			omly selected o		

		light truck got 2	20 MPG. Conduct a t- test of th	e null hypothesis	s at $p = 0.05$.					
	22	The mean productivity rating for all employees at a company was 3.8 on a five- point scale last year. This year you get ratings from a representative sample of fifteen employees from the Human Research Management. Do the data from this sample provide evidence that employee productivity in the department of Human Resource Management is significantly higher than in the company as a whole? Write the null and alternative hypotheses for this problem. Use statistical analysis software to test the null hypothesis stated above.								
		analysis softwar	ession equation for predicting s re. If one knows that a subject i r systolic blood pressure predic	in the future has	a score on job	satisfactio				
			Job Satisfaction	Systolic BP						
			34	124						
			23	128						
	23		19	157						
			43	133						
				56	116					
							47	125		
			32	147						
			16	167						
			55	110						
			25	156						
k				-						
	18	If the random P(X=6).	variable X follows a Poissor	1 distribution w	vith mean 3.4,	find				
22	19	the highest edu	ble of 395 people were survey cation level they obtained. The the following table. Are gender ance?	ne data that resu	ilted from the	survey is				
		level of signific								

		Fe	male	60	54	46	41	201
		Ма	Male		44	53	57	194
		То	tal	100	98	99	98	395
		Calcula	ate the	correlati	on coefficient of the tw	vo variables sho	own in the tabl	e below.
		Pers on	Ha nd	Heig ht				
		А	17	150				
	20	В	15	154				
		С	19	169				
		D	17	172				
		Е	21	175				
	21	trucks a is foun	are driv d that	ven 1000 the mean	16 light trucks is rand miles and the fuel mind MPG is 22 with a S G. Conduct a t- test of t	leage (MPG) o D equal to 3.	of each truck is The previous	s recorded. It model of the
	22	scale la employ provide Manag and alte	ast yea vees fro e evide ement ernativ	ar. This om the nce that is signif	y rating for all employ year you get ratings Human Research Mar employee productivit icantly higher than in eses for this problem. above.	from a repres agement. Do y in the depart the company a	entative samp the data from tment of Hum as a whole? W	le of fifteen this sample an Resource Vrite the null
		analysi	s softw at is the	vare. If o	equation for predicting ne knows that a subjec lic blood pressure pred	t in the future h	as a score on	job satisfaction o
					Job Satisfaction	n Systolic B	Р	
	23				34	124		
					23	128		
					19	157		
					43	133		
					56	116		

						47	125			
						32	147			
						16	167			
						55	110			
						25	156			
	18	If the r P(X=6		n variabl	e X foll	lows a Poisso	n distribution	with mean 3.	4, find	
		the hig summa	hest e rized i	ducation 1	level the	ey obtained. T	he data that re	sulted from th	e survey is	
	19			High S	School	Bachelors	Masters	with mean 3.4, find erson was asked to report sulted from the survey is on level dependent at 5% Ph.D Total 41 201 57 194 98 395 wn in the table below.		
		Fei	male	60		54	46	41	201	
		Ma	ale	40		44	53	57	194	
		То	tal	100		98	99	98	395	
		Calculate the correlation coefficient of the two variables shown in the table below.							below.	
23		Pers on	Ha nd	Heig ht						
		A	17	150						
	20	В	15	154						
		С	19	169						
		D	17	172						
		Е	21	175						
	21	Suppose a sample of 16 light trucks is randomly selected off the assembly line. The trucks are driven 1000 miles and the fuel mileage (MPG) of each truck is recorded. It is found that the mean MPG is 22 with a SD equal to 3. The previous model of the light truck got 20 MPG. Conduct a t- test of the null hypothesis at p = 0.05.								
	22	The mean productivity rating for all employees at a company was 3.8 on a five- po scale last year. This year you get ratings from a representative sample of fifth employees from the Human Research Management. Do the data from this sam provide evidence that employee productivity in the department of Human Resou Management is significantly higher than in the company as a whole? Write the r								

	and alternative hypothe null hypothesis stated a	eses for this problem. Us bove.	se statistical analys	is software to test the			
	Obtain the regression equation for predicting systolic blood pressure from job analysis software. If one knows that a subject in the future has a score on job s 15, what is their systolic blood pressure predicted to be? What is the standard estimate?						
		Job Satisfaction	Systolic BP				
		34	124				
		23	128				
22		19	157	-			
23		43	133	-			
		56	116				
		47	125	_			
		32	147				
		16	167				
		55	110				
		25	156				

Course Assessment Method (CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Experiment with concepts of iteration, function, string and list	К3
CO2	Identify the importance of tuples, dictionary traversal, dictionary methods, files and operations	К3
CO3	Model graphical representation of data, measures of central tendency and measures of dispersion	КЗ
CO4	Solve problems based on Binomial distribution, Poisson distribution, sampling and regression analysis	КЗ
CO5	Make use of various correlation tests and utilize statistical analysis software	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	V	V	V					V				V
CO2	V	V	V	V				٧				V
CO3	V	V	V	V				V				٧
CO4	V	V	V	V				V				٧
CO5	V	V	V	V	V			V				V

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Probability and Statistics for Engineering and the Sciences	Jay L Devore	Cengage Learning India	9/e, 2020					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

• Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.

• Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

•Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
 - Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
 - Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
 - Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

•Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 4

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

SEMESTER S4

MATHEMATICS FOR COMPUTER AND INFORMATION SCIENCE-4

Course Code	GAMAT401	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NIL	Course Type	Theory

(Group A)

Course Objectives:

1. To provide a comprehensive understanding of fundamental concepts of graph theory including paths, cycles, trees, graph algorithms, graph coloring and matrix representations, emphasizing their applications across various disciplines.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	 Introduction to Graphs - Basic definition, Application of graphs, finite and infinite graphs, Incidence and Degree, Isolated vertex, Pendant vertex and Null graph. Isomorphism, Sub graphs, Walks, Paths and circuits, Connected graphs, Disconnected graphs and components. [Text 1: Relevant topics from sections 1.1, 1.2, 1.3, 1.4, 1.5, 2.1, 2.2, 2.4, 2.5. Proofs of theorems 2.5, 2.7 are excluded.] 	9
2	 Euler graphs, Operations on Graphs, Hamiltonian paths and circuits, Travelling Salesman Problem, Connectivity, Edge connectivity, Vertex connectivity, Directed graphs, Types of directed graphs. [Text 1: Relevant topics from sections 2.6, 2.7, 2.8, 2.9, 2.10, 4.1, 4.2, 4.5, 9.1, 9.2. Proofs of theorems 4.6, 4.11, 4.12 are excluded.] 	9

3	Trees- properties, Pendant vertices, Distance and centres in a tree, Rooted and binary trees, Counting trees, Spanning trees, Prim's algorithm and Kruskal's algorithm, Dijkstra's shortest path algorithm, Floyd-Warshall shortest path algorithm. [Text 1: Relevant topics from sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.10, 11.5. Proofs of theorems 3.10, 3.16 are excluded.]	9
4	 Matrix representation of graphs- Adjacency matrix, Incidence Matrix, Circuit Matrix, Path Matrix, Coloring, Chromatic number, Chromatic polynomial, Greedy colouring algorithm. [Text 1: Relevant topics from sections 7.1, 7.3, 7.8, 7.9, 8.1, 8.3. Proofs of theorems 7.4, 7.7, 7.8, 8.2, 8.3, 8.5, 8.6 are excluded.] 	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3 sub	00
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the fundamental concepts of graph theory such as types of graphs, degree of a vertex, graph isomorphism, connectedness.	К2
CO2	Understand the concepts of Euler graphs, Hamiltonian graphs and connectivity.	K2
СОЗ	Apply Prim's and Kruskal's algorithms for finding minimum cost spanning tree and Dijkstra's and Floyd-Warshall algorithms for finding shortest paths.	К3
CO4	Illustrate various representations of graphs using matrices and apply vertex coloring in real life problems.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	-	-	-	-	-	-	-	-	2
CO2	3	3	2	-	-	-	-	-	-	-	-	2
CO3	3	3	2	2	-	-	-	-	-	-	-	2
CO4	3	3	2	2	-	-	-	-	-	-	-	2

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Graph Theory with Applications to Engineering and Computer Science	Narsingh Deo	Prentice Hall India Learning Private Limited	1st edition, 1979							

	Reference Books										
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year							
1	Introduction to Graph Theory	Douglas B. West	Pearson Education	2nd edition,							
	2e		India	2015							
2	Introduction to Graph Theory	Robin J. Wilson	Longman Group Ltd.	5th edition,							
				2010							
3	Graph Theory with	J.A. Bondy and U.S.R.	Elsevier Science	1976							
	Applications	Murty	Publishing Co., Inc	1770							

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://onlinecourses.nptel.ac.in/noc22_ma10/preview								
2	https://onlinecourses.nptel.ac.in/noc22_ma10/preview								
3	https://onlinecourses.nptel.ac.in/noc21_cs48/preview								
4	https://onlinecourses.nptel.ac.in/noc21_cs48/preview								

SEMESTER S4

DATABASE MANAGEMENT SYSTEMS

(Common to CS/CD/CA/CR/AD/AI/CB/CN/CC/CU/CI/CG)

Course Code	PCCST402	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST303	Course Type	Theory

Course Objectives:

- 1. Equip the students with a comprehensive understanding of fundamental DBMS concepts as well as the principles and applications of NoSQL databases
- 2. Enable students to design, implement, and manage both relational and NoSQL databases

SYLLABUS

Module No.	Syllabus Description	Contact Hours
	Introduction to Databases :- Database System Concepts and Architecture-	
	Data Models, Schemas and Instances, Three-Schema Architecture and Data	
	Independence, Database Languages and Interfaces, Centralized and	
	Client/Server Architectures for DBMSs.	
1	Conceptual Data Modelling and Database Design:- Data Modelling	
	Using the Entity, Relationship (ER) Model - Entity Types, Entity Sets,	11
	Attributes, and Keys, Relationship Types, Relationship Sets, Roles, and	
	Structural Constraints, Weak Entity Types. Refining the ER Design for the	
	COMPANY Database.	
	The Relational Data Model and SQL - The Relational Data Model and	
	Relational Database Constraints-Relational Algebra and Relational	
2	Calculus - Structured Query Language (SQL)-Data Definition Language,	
	Data Manipulation Language, Assertions, Triggers, views, Relational	11
	Database Design Using ER-to-Relational Mapping.	
	Database Design Theory & Normalization - Functional Dependencies -	
3	Basic definition; Normalization- First, Second, and Third normal forms.	11
	Transaction Management - Transaction Processing : Introduction, problems	

	and failures in transaction, Desirable properties of transaction,							
	Characterizing schedules based on recoverability and serializability;							
	Concurrency Control with Two-Phase Locking Techniques- Database							
	Recovery management: Deferred update-immediate update- shadow paging.							
4	Introduction To NoSQL Concepts - types of NoSQL databases- CAP							
	Theorem- BASE properties- Use Cases and limitations of NoSQL.							
	SQL architectural Patterns - Key value Stores, Graph Stores, Column							
	Family stores and Document Stores.							

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course, students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Summarize and exemplify the fundamental nature and characteristics of database systems	K2
CO2	Model and design solutions for efficiently representing data using the relational model or non-relational model	К3
СО3	Discuss and compare the aspects of Concurrency Control and Recovery in Database systems	К3
CO4	Construct advanced SQL queries to effectively retrieve, filter, and manipulate data from relational databases.	К3
CO5	Experiment with NoSQL databases in real world applications	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3						2	2	3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fundamentals of Database Systems [Module 1,2,3,4]	Elmasri, Navathe	Pearson	7/e,		
2	Making the Sense of NoSQL : A guide for Managers and rest of us [Module 4]	Dan McCreary and Ann Kelly	Manning	2014		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year 7/e, 2011		
1	A., H. F. Korth and S. Sudarshan, Database System Concepts,	Sliberschatz A., H. F. Korth and S. Sudarshan, Database System Concepts, 6/e, McGraw Hill, 2011.	McGraw Hill,			
2	Beginning Database Design Solutions	Rod Stephens	Wiley	2/e, 2023		
2	NoSQL Distilled	Pramod J. Sadalage, Martin Fowler	Addison- Wesley	1/e, 2012		
3	NoSQL Data Models: Trends and Challenges (Computer Engineering: Databases and Big Data),	Olivier Pivert	Wiley	2018		

Video Links (NPTEL, SWAYAM)			
Module No.	Link ID		
1	https://onlinecourses.nptel.ac.in/noc21_cs04/preview		
2	https://onlinecourses.nptel.ac.in/noc21_cs04/preview		
3	https://onlinecourses.nptel.ac.in/noc21_cs04/preview		
4	https://archive.nptel.ac.in/courses/106/104/106104135/		

SEMESTER S4

OPERATING SYSTEMS

(Common to CS/CD/CM/CR/CA/AD/AI/CB/CN/CC/CU/CI/CG)

Course Code	PCCST403	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the structure of a typical operating system and its core functionalities
- **2.** To impart to the students, a practical understanding of OS implementation nuances based on the Linux operating system

SYLLABUS

Module	Syllabus Description	
No.		
1	 Introduction to Operating Systems (Book 1 Ch 2 introductory part), Operating System Services (Book 3 Ch 2) Overview of Operating Systems and Kernels, Linux Versus Classic Unix Kernels (Book 2 Ch 1) Process concepts: Process Creation, Process States, Data Structures, Process API (Book 1 Ch 4, 5), Sharing processor among processes - user and kernel modes, context switching (Book 1 Ch 6), System boot sequence (Book 3 Ch 2) <i>Case study: Linux kernel process management (Book 2, Ch 3)</i> Threads and Concurrency: Concept of a thread, Multithreading benefits, Multithreading models (Book 3 Ch 4) <i>Case study: The Linux Implementation of Threads (Book 2, Ch 3)</i> Process scheduling: Concepts and basic algorithms (Book 1 Ch 7), The 	11

12
11
10

 and writing files (sequential and random access), Removing files - Hard links and Symbolic links, Creating, reading and deleting directories, Permission bits and Access Control Lists, Mounting a file system (Book 1 Ch 39)
 File Organization: The Inode, The Multi-Level Index (Book 1 Ch 40)
 Case study: VFS Objects and Their Data Structures - The Inode Object, Inode Operations (Book 2 Ch 13)

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3 sub-	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply the concepts of process management and process scheduling mechanisms employed in operating systems.	К3
CO2	Choose various process synchronization mechanisms employed in operating systems.	К3
CO3	Use deadlock prevention and avoidance mechanisms in operating systems.	К3
CO4	Select various memory management techniques in operating systems.	K3
CO5	Understand the storage management in operating systems.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Operating Systems: Three Easy Pieces	Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau	CreateSpace	1/e, 2018			
2	Linux Kernel Development	Robert Love	Pearson	3/e, 2018			
3	Operating System Concepts	Abraham Silberschatz, Peter B. Galvin, Greg Gagne	Wiley	10/e, 2018			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Modern Operating Systems	Andrew S. Tanenbaum Herbert Bos	Pearson	5/e, 2012			
2	The Design of the UNIX Operating System	Maurice J. Bach	Prentice Hall of India	1/e, 1994			
3	The Little Book of Semaphores	Allen B. Downey	Green Tea Press	1/e, 2016			

	Video Links (NPTEL, SWAYAM)					
No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105214/					
2	https://www.youtube.com/playlist?list=PLDW872573QAb4bj0URobvQTD41IV6gRkx					

COMPUTER ORGANIZATION AND ARCHITECTURE

(Common to CS/CD/CR/CA/AD/CB/CN/CC/CU/CG)

Course Code	PBCST404	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GAEST305	Course Type	Theory

Course Objectives

- 1. Introduce principles of computer organization and the basic architectural concepts using RISC.
- 2. Introduce the concepts of microarchitecture, memory systems, and I/O systems.

Module No.	Syllabus Description				
1	 Basic Structure of computers :- Functional units - Basic operational concepts; Memory map; Endianness. CISC vs RISC architectures:- RISC Introduction - Assembly Language, Assembler directives, Assembling. Programming concepts - Program flow, Branching, Conditional statements, Loops, Arrays, Function calls; Instruction execution cycle. Machine language - Instructions, addressing modes, Stored program concept. Evolution of the RISC Architecture. 	11			
2	Microarchitecture - Introduction; Performance analysis; Single-Cycle Processor - Single Cycle Datapath, Single Cycle Control; Pipelined Processor - Pipelined Data Path, Pipelined Control: Hazards, Solving Data/Control Hazards, Performance Analysis.	11			
3	Memory Systems: Introduction; performance analysis; Caches - basic concepts, Cache mapping, Cache replacement, Multiple-Level Caches, Reducing Miss Rate, Write Policy; Virtual Memory - Address Translation; Page Table; Translation Lookaside Buffer; Memory Protection.	11			

Ī		Input / Output - External Devices; I/O Modules; Programmed I/O,			
	4	Interrupt Driven I/O; Direct Memory Access; Embedded I/O Systems -			
		Embedded I/O, General Purpose I/O, Serial I/O, Other Peripherals.			

Suggestion on Project Topics

Use simulators such as Ripes (https://github.com/mortbopet/Ripes) / GEM5 (https://www.gem5.org/) implement components of computer systems such as Various Cache organization and study the effect, Solutions to hazards, TLBs.

Course Assessment Method

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each module,	
module.	out of which 1 question should be answered.	
• Total of 8 Questions,	• Each question can have a maximum of 2	40
each carrying 2 marks	subdivisions.	40
(8x2 =16 marks)	• Each question carries 6 marks.	
	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Identify the basic structure and functional units of a digital computer and the features of RISC architecture.	K2
CO2	Experiment with the single cycle processor, pipelining, and the associated problems.	К3
CO3	Utilize the memory organization in modern computer systems.	K3
CO4	Experiment with the I/O organization of a digital computer.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Digital Design and Computer Architecture - RISC-V Edition	Sarah L. Harris, David Harris	Morgan Kaufmann	1/e, 2022			
2	Computer Organization and Architecture Designing for Performance	William Stallings	Pearson	9/e, 2013			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Organization and Design : The Hardware/Software Interface: RISC-V Edition	David A. Patterson John L. Hennessy	Morgan Kaufaman	1/e,2018		
2	Computer Organization and Embedded Systems	Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian	McGraw Hil	6/e, 2012		
3	Modern Computer Architecture and Organization	Jim Ledin	Packt Publishing	1/e,2020		

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105163/					
2	2 https://archive.nptel.ac.in/courses/106/106106166/					

PBL Course Elements

L: Lecture	R:	R: Project (1 Hr.), 2 Faculty Members				
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation(Progress and FinalPresentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

Assessment and Evaluation for Project Activity	

Sl. No	Evaluation for	Allotted
		Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

SOFTWARE ENGINEERING

(Common to CS/CD/CM/CR/CA/AD/AM/CB/CN/CU/CI)

Course Code	PECST411	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Provide fundamental knowledge in the Software Development Process including Software Development, Object Oriented Design, Project Management concepts and technology trends.
- 2. To enable the learners to apply state of the art industry practices in Software development.

Module No.	Syllabus Description				
1	 Introduction to Software Engineering and Process Models - Software engineering, Software characteristics and types, Layers of Software Engineering-Process, Methods, Tools and Quality focus. Software Process models – Waterfall, Prototype, Spiral, Incremental, Agile model – Values and Principles. Requirement engineering - Functional, Non-functional, System and User requirements. Requirement elicitation techniques, Requirement validation, Feasibility analysis and its types, SRS document characteristics and its structure. 	9			
	Case study: SRS for College Library Management Software				
2	 Software design - Software architecture and its importance, Software architecture patterns: Component and Connector, Layered, Repository, Client-Server, Publish-Subscribe, Functional independence – Coupling and Cohesion <i>Case study:</i> Ariane launch failure Object Oriented Software Design - UML diagrams and relationships– Static and dynamic models, Class diagram, State diagram, Use case diagram, 	9			

	Sequence diagram	
	Case Studies: Voice mail system, ATM Example	
	Software pattern - Model View Controller, Creational Design Pattern types -	
	Factory method, Abstract Factory method, Singleton method, Prototype	
	method, Builder method. Structural Design Pattern and its types - Adapter,	
	Bridge, Proxy, Composite, Decorator, Façade, Flyweight. Behavioral Design	
	Pattern	
	Coding, Testing and Maintenance:	
	Coding guidelines - Code review, Code walkthrough and Code inspection,	
	Code debugging and its methods.	
	Testing - Unit testing , Integration testing, System testing and its types, Black	
	box testing and White box testing, Regression testing	
3	Overview of DevOps and Code Management - Code management, DevOps	9
	automation, Continuous Integration, Delivery, and Deployment (CI/CD/CD),	
	<i>Case study</i> – Netflix.	
	Software maintenance and its types- Adaptive, Preventive, Corrective and	
	Perfective maintenance. Boehm's maintenance models (both legacy and non-	
	legacy)	
	Software Project Management - Project size metrics – LOC, Function points	
	and Object points. Cost estimation using Basic COCOMO.	
	Risk management: Risk and its types, Risk monitoring and management model	
	Software Project Management - Planning, Staffing, Organizational structures,	
4	Scheduling using Gantt chart. Software Configuration Management and its	0
4	phases, Software Quality Management - ISO 9000, CMM, Six Sigma for	9
	software engineering.	
	Cloud-based Software -Virtualisation and containers, Everything as a service	
	(IaaS, PaaS), Software as a service. Microservices Architecture - Microservices,	
	Microservices architecture, Microservice deployment.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Plan the system requirements and recommend a suitable software process model	К3
CO2	Model various software patterns based on system requirements	K3
СО3	Apply testing and maintenance strategies on the developed software product to enhance quality	К3
CO4	Develop a software product based on cost, schedule and risk constraints	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Software Engineering: A practitioner's approach	Roger S. Pressman	McGraw-Hill International edition	8/e, 2014	
2	Software Engineering	Ian Sommerville	Addison-Wesley	10/e, 2015	
3	Design Patterns, Elements of Reusable Object Oriented Software	Erich Gamma,Richard Helm, Ralph Johnson,John Vlissides	Pearson Education Addison-Wesley	1/e, 2009	

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Pankaj Jalote's Software Engineering: With Open Source and GenAI	Pankaj Jalote	Wiley India	1/e, 2024		
2	Software Engineering: A Primer	Waman S Jawadekar	Tata McGraw-Hill	1/e, 2008		
3	Object-Oriented Modeling and Design with UML	Michael Blaha, James Rumbaugh	Pearson Education.	2/e, 2007		
4	Software Engineering Foundations : A Software Science Perspective	Yingux Wang	Auerbach Publications	1/e, 2008		
5	Object-Oriented Design and Patterns	Cay Horstmann	Wiley India	2/e, 2005		
6	Engineering Software Products: An Introduction to Modern Software Engineering	Ian Sommerville	Pearson Education	1/e, 2020		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://www.youtube.com/watch?v=Z6f9ckEEIsU					
2	https://www.youtube.com/watch?v=1xUz1fp23TQ					
3	http://digimat.in/nptel/courses/video/106105150/L01.html					
4	https://www.youtube.com/watch?v=v7KtPLhSMkU					

FOUNDATIONS OF SECURITY IN COMPUTING

Course Code	PECDT412	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To introduce the fundamental concepts of security in computing. The course will cover the principles and practices used to secure computer systems and networks
- **2.** To train the learners in cryptography, network security, software security, and security policies.

Module No.	Syllabus Description			
	Overview of Computer Security: Definition and importance, Historical context. Fundamental Concepts: CIA triad: Confidentiality, Integrity,			
	Availability, Authentication, Authorization, and Accountability. Common			
1	Threats and Vulnerabilities: Malware: Viruses, Worms, Trojans, Phishing,	8		
	Social Engineering, Denial of Service (DoS) attacks. Security Policies and			
	Risk Management: Developing and implementing security policies, Risk			
	assessment and mitigation.			
	Introduction to Cryptography: Basic concepts and terminology, Historical			
	background. Symmetric Encryption: Algorithms: DES, AES, Key			
2	management. Asymmetric Encryption: Algorithms: RSA, ECC, Public and	10		
-	private keys. Cryptographic Protocols: Digital signatures, Hash functions,	10		
	Public Key Infrastructure (PKI). Applications of Cryptography: Secure			
	communications (SSL/TLS), Email security (PGP, S/MIME).			
	Introduction to Network Security: Network security principles, Common			
3	network threats. Network Security Protocols: IPsec, SSL/TLS, SSH, VPNs.	10		
	Firewalls and Intrusion Detection Systems (IDS): Types of firewalls, IDS and			

	IPS systems. Wireless Network Security: Wireless encryption protocols (WEP, WPA, WPA2), Securing wireless access points. Network Security Practices: Network segmentation, Monitoring and logging.	
4	Introduction to Software Security:- Importance of secure software, Software development lifecycle (SDLC); Common Software Vulnerabilities - Buffer overflows, SQL injection, Cross-site scripting (XSS), Cross-site request forgery (CSRF). Secure Coding Practices: Input validation and sanitization, Secure error handling, Code reviews and static analysis. Software Security Testing: Penetration testing, Fuzz testing, Dynamic analysis. Security in Software Development: Secure software development frameworks, Integrating security into DevOps (DevSecOps)	10

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part APart B		Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	• Total of 8 Questions, each of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Understand the basic principles and concepts of computer security.	K2
CO2	Explain the cryptographic techniques and their applications.	K2
CO3	Apply the knowledge of network security protocols and practices.	K3
CO4	Model the software security vulnerabilities and mitigation strategies.	K3
C05	Identify security policies and risk management.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										2
CO2	2	3	1	2	2							2
CO3	1	3	2	2	3							2
CO4	2	3	2	2	2							3
CO5	2	2	1	1	2							2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer Security: Principles and Practice	William Stallings and Lawrie Brown	Pearson	5/e, 2023				
2	Cryptography and Network Security: Principles and Practice	William Stallings	Pearson	7/e, 2017				

	Reference Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year					
1	Cryptography and Network Security	Atul Kahate	McGraw Hill	4/e, 2019					
2	Cryptography And Network Security	Behrouz A Forouzan, Debdeep Mukhopadhyay	McGraw Hill	3/e, 2015					

	Video Links (NPTEL, SWAYAM)					
No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105162/					

FUNCTIONAL PROGRAMMING

(Common to CS/CD/CM/CR/CA/AD/AM/CB/CN/CU/CG)

Course Code	PECST413	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST204	Course Type	Theory

Course Objectives:

- **1.** To enable the learner write programs in a functional style and reason formally about functional programs;
- 2. To give the concepts of polymorphism and higher-order functions in Haskell to solve the

Module	Syllabus Description	Contact		
No.	Synabus Description			
1	Introducing Functional Programming; Getting Started with Haskell and GHCi; Basic Types and Definitions; Designing and Writing Programs; Data Types, Tuples and Lists. [Text Ch. 1, 2, 3, 4, 5]	9		
2	Programming with Lists; Defining Functions over Lists; Playing the Game: I/O in Haskell; Reasoning about Programs; [Text Ch. 6, 7, 8, 9]	9		
3	Generalization: Patterns of Computation; Higher-order Functions; Developing Higher-order Programs; Overloading, Type Classes and Type Checking. <i>[Text Ch. 10 11, 12, 13]</i>	9		
4	Algebraic Types; Case Study - Huffman Codes; Abstract Data Types; Lazy Programming; Time and Space Behaviour. <i>[Text Ch. 15, 16, 17, 20]</i>	9		

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total	
• 2 Questions from each	• Each question carries 9 marks.		
module.	• Two questions will be given from each module, out		
• Total of 8 Questions, each	of which 1 question should be answered.		
carrying 3 marks	• Each question can have a maximum of 3	60	
	subdivisions.		
(8x3 =24 marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Write computer programs in a functional style.	К2
CO2	Reason formally about functional programs and develop programs using lists.	К3
CO3	Use patterns of computation and higher-order functions.	К3
CO4	Reason informally about the time and space complexity of programs.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2			3							3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3		3							3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	HASKELL : The Craft of Functional Programming	Simon Thompson	Addison Wesley	3/e, 2023				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Thinking Functionally with Haskell	Richard Bird	Cambridge University Press	1/e, 2015				
2	Programming in Haskell	Graham Hutton	Cambridge University Press	2/e, 2023				
3	Real World Haskell	Bryan O'Sullivan, John Goerzen, Donald Bruce Stewart	O'Reilly	1/e, 2008				

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://archive.nptel.ac.in/courses/106/106/106106137/					

SIGNALS AND SYSTEMS

(Common to CS/CD/CM/CA/AM/CB/CN/CU/CI)

Course Code	PECST416	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To teach the concept of a Discrete Time (DT) signal
- **2.** To enable the learner to analyze the spectral information of any DT signal and its transformed version.
- **3.** To provide the learner the concepts of a DT system, how it behaves to an arbitrary input, and also to analyze the behaviour of a given DT system based on z-transform

Module	Sullabus Description	Contact		
No.	Syllabus Description			
1	 1D Signals - A general introduction to real time signals - CT and DT signals, Sinusoids, Spectrum representation, Sampling and Aliasing (Concept only), Analog frequency and Digital frequency. Elementary sequences- Real Sinusoidal Sequences, Complex Exponential Sequences Unit impulse, step and ramp sequences, Representation of discrete time signals- (Graphical representation, Functional representation, Sequence representation) Properties of DT Signals - Even and Odd, Periodic and non periodic signal, Energy and Power signals. Periodicity and Symmetry property of DT signals, 	Hours 8		
	 support of sequences, Bounded Sequences. Operations on Signals - Time shifting (Translation), Time Reversal (Reflection), Time scaling - Upsampling and downsampling DTFS - Determining the Fourier-Series Representation of a Sequence, 			

2	 Properties of Discrete-Time Fourier Series - Linearity, Translation (Time Shifting), Modulation (Frequency Shifting), Reflection (Time Reversal), Conjugation, Duality, Multiplication, Parseval's Relation, Even/Odd symmetry, Real sequence. (Practice of Visualization of a discrete time signal and operations on the DT signal using python. Demonstration of sampling and reconstruction using Python/Matlab.) Discrete-Time Fourier Transform for Aperiodic Sequences - Properties of the Discrete-Time Fourier Transform (Periodicity, Linearity, Translation (Time Shifting), Modulation (Frequency-Domain Shifting), Conjugation, Time Reversal, Convolution, Multiplication, Frequency-Domain Differentiation, Differencing, Parseval's theorem, Even/Odd symmetry, real sequences) DTFT of periodic sequences - Frequency Spectra of Sequences, Bandwidth of Sequences, Energy density spectra, Characterizing LTI Systems Using the Fourier Transform. 	10
3	Discrete time systems - Block diagram representation and mathematical representation of discrete-time systems-Some common elements of Discrete- time systems (adder, constant multiplier, signal multiplier, unit delay, unit advance), Recursive DT systems and non recursive discrete time systems, Relaxed system, Linearity and time invariance property of a DT system. Discrete time LTI systems - Discrete time convolution, Properties of Convolution, Characterizing LTI Systems and Convolution - Impulse response of an LTI system, Difference equation, Properties of an LTI system - Causality, Memory, Invertibility, BIBO Stability, Eigen Sequences/ eigen functions for discrete-Time LTI Systems.	9
4	 Z transform - motivation for z transform, Relationship Between z Transform and Discrete-Time Fourier Transform, Region of Convergence for the z Transform. Properties of z transform - Translation (Time Shifting), Complex Modulation (z-Domain Scaling), Conjugation, Time Reversal, Upsampling (Time Expansion, Downsampling, Convolution, z-Domain Differentiation, Differencing, Initial and Final Value Theorems Determination of the Inverse z Transform LTI systems and difference equations, Characterizing LTI systems using z transform, Transfer function of an LTI system. Solving Difference Equations Using the Unilateral z Transform Block Diagram Representation of Discrete-Time LTI Systems, Interconnection of LTI systems. 	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	
divisions.		
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the concept and different types of DT signals and the effect of different operations on the signals.	К2
CO2	Explain how DTFS can be used to represent a periodic DT signal.	K2
СО3	Apply the concept of DTFT for an aperiodic signal to determine the frequency spectrum.	К3
CO4	Utilize the properties of a DT system based on its impulse response and z transform.	К3
C05	Identify the response of a DT LTI system to an arbitrary input sequence.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	2	2								3
CO4	3	3	3	3								3
CO5	3	3	3	3								3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Signals and Systems	Michael D. Adams	University of Victoria, British Columbia, Canada	3/e 2020				
2	Signals and systems	Barry Van Veen, Simon Haykins	Wiley	2/e, 2007				
3	Signals and systems	A Nagoor Khani	McGraw Hill	2/e, 2022				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Signals and Systems Using the Web and MATLAB	Edward W. Kamen, Bonnie S Heck	Pearson	3/e, 2014				

	Video Links (NPTEL, SWAYAM)						
No.	No. Link ID						
1	https://archive.nptel.ac.in/courses/108/104/108104100/						
2	https://archive.nptel.ac.in/courses/108/106/108106163/						

SOFT COMPUTING

(Common to CS/CD/CM/CR/CA/AD/AI/AM/CB/CN/CI)

Course Code	PECST417	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give exposure on soft computing, various types of soft computing techniques, and applications of soft computing
- **2.** To impart solid foundations on Neural Networks, its architecture, functions and various algorithms involved, Fuzzy Logic, various fuzzy systems and their functions, and Genetic algorithms, its applications and advances.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Soft Computing. Difference between Hard Computing & Soft Computing. Applications of Soft Computing. Artificial Neurons Vs Biological Neurons. Basic models of artificial neural networks – Connections, Learning, Activation Functions. McCulloch and Pitts Neuron. Hebb network, Perceptron Networks– Learning rule, Training and testing algorithm. Adaptive Linear Neuron– Architecture, Training and testing algorithm.	10
2	 Fuzzy logic, Fuzzy sets – Properties, Fuzzy membership functions, Features of Fuzzy membership functions. operations on fuzzy set. Linguistic variables, Linguistic hedges Fuzzy Relations, Fuzy If-Then Rules, Fuzzification, Defuzzification– Lamda cuts, Defuzzification methods. Fuzzy Inference mechanism - Mamdani and Sugeno types. 	9
3	Evolutionary Computing, Terminologies of Evolutionary Computing, Concepts of genetic algorithm. Operators in genetic algorithm - coding,	8

	selection, cross over, mutation. Stopping condition for genetic algorithm.					
4	Multi-objective optimization problem. Principles of Multi- objective optimization, Dominance and pareto-optimality. Optimality conditions. Collective Systems, Biological Self-Organization, Particle Swarm Optimization, Ant Colony Optimization, Swarm Robotics.	9				

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the techniques used in soft computing and outline the fundamental models of artificial neural networks	K2
CO2	Solve practical problems using neural networks	K3
CO3	Illustrate the operations, model, and applications of fuzzy logic.	K3
CO4	Illustrate the concepts of evolutionary algorithms such as Genetic Algorithm	К3
CO5	Describe the concepts of multi-objective optimization models and collective systems.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	2	2								3
CO3	3	3	3	2								3
CO4	3	3	2	2								3
CO5	3	3	3									3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Principles of Soft Computing	S.N.Sivanandam, S.N. Deepa	John Wiley & Sons.	3/e, 2018			
2	Multi-objective Optimization using Evolutionary Algorithms	Kalyanmoy Deb,	John Wiley & Sons	1/e, 2009			
3	Computational intelligence: synergies of fuzzy logic, neural networks and evolutionary computing.	Siddique N, Adeli H.	John Wiley & Sons	1/e, 2013			
4	Bio-inspired artificial intelligence: theories, methods, and technologies.	Floreano D, Mattiussi C.	MIT press; 2008 Aug 22.	1/e, 2023			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fuzzy Logic with Engineering Applications	Timothy J Ross,	John Wiley & Sons,	3/e, 2011			
2	Neural Networks, Fuzzy Logic & Genetic Algorithms Synthesis and Applications	T.S.Rajasekaran, G.A.Vijaylakshmi Pai	Prentice-Hall India	1/e, 2003			
3	Neural Networks- A Comprehensive Foundation	Simon Haykin	Pearson Education	2/e, 1997			
4	Fuzzy Set Theory & Its Applications	Zimmermann H. J,	Allied Publishers Ltd.	4/e, 2001			

	Video Links (NPTEL, SWAYAM)
No.	Link ID
1	https://archive.nptel.ac.in/courses/106/105/106105173/

MICROCONTROLLERS

(Common to AD/CD/CR)

Course Code	PEADT418	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the ARM architecture and ARM-based microcontroller architecture.
- **2.** To impart knowledge on the hardware and software components to develop embedded systems using STM32 microcontrollers.

Module No.	Syllabus Description			
1	Introduction to Embedded Systems and ARM Cortex-M Architecture:- Overview of embedded systems including definition, applications, and characteristics, Embedded C Programming Basics and Key Concepts, Differences and use cases of microcontrollers versus microprocessors, Classification of processors including RISC, CISC, and other architectures, Overview of ARM Cortex-M Series features and applications, Introduction to Cortex-M23 and Cortex-M33 Processors: Armv8-M Architecture, Core Features (Registers, Memory, Bus Architecture),Comparison with Previous Cortex-M Generations.			
2	 STM32 Microcontroller Overview and Development Environment Setup:- Overview of the STM32 Family and Features of the STM32U575, Development Environment and HAL- Introduction, Writing, and Debugging Your First Program (LED Interfacing); Interfacing - Seven-Segment Display, 	10		

	LCD Display, Matrix Keypad, Relay, Analog to Digital Conversion- Potentiometer, Temperature Sensor, LDR, Microphone, Digital to Analog Conversion - Simple DAC Output, Sine Wave Generation, Audio Signal Generation, Interrupt Handling Basics and Applications, Timers and PWM: Configuration, Real-Time Clock (RTC), LED Brightness Control, Motor Speed Control	
3	Overview of Serial Communication Protocols- USART, I2C, and SPI, Interfacing an I2C Temperature Sensor and Displaying Data on an LCD, writing to and Reading from an SPIbased EEPROM, Implementing CAN Communication Between STM32 Microcontrollers; Creating a USB HID Device for Keyboard and Mouse Emulation.	9
4	IoT and RTOS:- Introduction to IoT and its Layers of Architecture, Introduction to IoT Communication Protocols including MQTT, CoAP, and HTTP, Securing IoT Data Using Encryption Techniques, Wireless Communication Basics- GSM, Interfacing GSM (Sending SMS, Making Calls, Internet Connectivity Using AT Commands), Bluetooth(Data Transfer between STM32U575 and Mobile Devices), RTOS Concepts: FreeRTOS Overview, Task Creation, Scheduling, Timers, Inter-task Communication (Queues, Semaphores), Designing an IoT-Based Home Automation System.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions.

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the architectural features and instructions of the ARM microcontrollers.	K2
CO2	Develop applications involving interfacing of external devices and I/O with ARM microcontroller.	К3
СО3	Use various communication protocols of interaction with peer devices and peripherals.	К3
CO4	Demonstrate the use of a real time operating system in embedded system applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	The Definitive Guide to ARM Cortex- M3 and Cortex-M4 Processors	Joseph Yiu	Newnes - Elsevier	3/e, 2014			
2	Mastering STM32	Carmine Noviello	Learnpub	2/e, 2022			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	ARM System Developer's Guide	Andrew N. Sloss, Dominic Symes, Chris Wright	Morgan Kaufman	1/e, 2008			
2	Embedded System Design with Arm Cortex-M Microcontrollers	Cem Ünsalan, Hüseyin Deniz Gürhan, Mehmet Erkin Yücel	Springer	1/e, 2022			
3	Introduction to ARM ® Cortex-M Microcontrollers	Jonathan W. Valvano	Self-Published	5/e, 2014			

	Video Links (NPTEL, SWAYAM)						
Module No.	Module No. Link ID						
1	1 https://archive.nptel.ac.in/courses/106/105/106105193/						
2	https://www.st.com/resource/en/datasheet/						

FOUNDATIONS OF PATTERN RECOGNITION

Course Code	PEADT415	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST303	Course Type	Theory

Course Objectives:

- **1.** To provide a comprehensive understanding of the fundamental concepts and techniques of pattern recognition.
- 2. To develop the ability to apply pattern recognition methods to solve practical problems.
- **3.** To enhance skills in using modern tools and techniques for feature extraction, dimensionality reduction, and machine learning algorithms

Module No.	Syllabus Description	Contact Hours
1	Introduction to Pattern Recognition - Basics of pattern recognition, Applications and examples, Statistical pattern recognition, Introduction to classifiers: k-NN, Naive Bayes Project 1: Image Classification using k-NN and Naive Bayes - Classify images from the CIFAR-10 dataset using k-NN and Naive Bayes classifiers, and the deliverables are code implementation, project report, and presentation. Assignments : Assignment on k-NN and Naive Bayes classifiers Mini-project proposal submission	9
2	Feature Extraction and Dimensionality Reduction - Feature selection techniques, Principal Component Analysis (PCA), Non-linear dimensionality reduction methods (t-SNE, LLE)	9

	 Project 2: Dimensionality Reduction for Handwritten Digit Recognition - Use PCA and LDA to reduce the dimensionality of the MNIST dataset and apply a classifier, and the deliverables are code implementation, project report, and presentation. Assignments: Assignment on PCA and LDA theory, Mid-term project: Detailed report on feature extraction project 	
3	Machine Learning Algorithms for Pattern Recognition - Support VectorMachines (SVM), Neural Networks and Deep Learning, Ensemble methods(Random Forests, Gradient Boosting), Clustering techniques (k-means, hierarchical clustering)Project 3: Text Classification using SVM and Neural Networks - Classify text documents from the 20 Newsgroups dataset using SVM and a simple neural network, and the deliverables are code implementation, project report, and presentation.Assignments : Assignment on SVM and neural network theory Group project on Ensemble methods applied to a complex dataset	9
4	 Advanced Topics and Applications - Hidden Markov Models (HMM), Bayesian Networks, Pattern recognition in speech and handwriting. Project 4 : Speech Recognition using Hidden Markov Models - Develop a speech recognition system using Hidden Markov Models using the dataset - TIMIT Acoustic-Phonetic Continuous Speech Corpus. The deliverables are code implementation, project report, and presentation. Tools: Python, HTK (Hidden Markov Model Toolkit). Project 5: Handwriting Recognition using Deep Learning - Develop a handwriting recognition system using deep learning techniques using the datasets - MNIST Handwritten Digits Dataset, IAM Handwriting Database. The deliverables are code implementation, project report, and presentation. Tools: Python, TensorFlow/Keras, OpenCV. Project 6: Bayesian Networks for Medical Diagnosis - Use Bayesian Networks to develop a system for medical diagnosis using the datasets - UCI Machine Learning Repository, Hepatitis Dataset. The deliverables are code 	9

implementation, project report, and presentation. Tools: Python, PyMC3,	
Netica.	
Assignments:	
Assignment on HMM and Bayesian networks	
Final project: Comprehensive pattern recognition application	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

1. Code Implementation (40%) – 8 Marks

- Correctness (4 Marks): Code accurately implements the required algorithms (e.g., k-NN, Naive Bayes, PCA, LDA, SVM, Neural Networks, HMM) and processes the dataset as expected. Code runs without errors and produces the expected output for different scenarios or edge cases.
- Efficiency and Robustness (4 Marks): Code is optimized for efficiency, handling large datasets or complex computations effectively, and includes error handling and can manage diverse data.
- 2. Results Analysis (60%) 12 Marks
- Valuation Metrics (6 Marks): Proper use of evaluation metrics (e.g., accuracy, precision, recall, F1 score) to assess the performance of classifiers and dimensionality reduction techniques. Comparison of different methods or classifiers and discussion on their effectiveness, including strengths and limitations.
- Insightful Analysis (6 Marks): Interpretation of the results, including any anomalies or unexpected findings. Based on results, provides thoughtful recommendations or insights for potential improvements or alternative approaches.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 3 sub divisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Understand and explain the fundamental concepts of pattern recognition and its applications.	K2
CO2	Apply statistical and machine learning techniques to solve pattern recognition problems.	К3
СО3	Implement feature extraction and dimensionality reduction techniques for various datasets.	K4
CO4	Develop and evaluate different machine learning models for pattern recognition tasks.	К5
C05	Work on real-world pattern recognition projects, demonstrating problem-solving and project management skills.	К5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3				3		3	3		3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year		
1	Pattern Recognition and Machine Learning	Christopher M. Bishop	Springer	1/e, 2009		
2	Mastering Machine Learning Algorithms	Giuseppe Bonaccorso	Packt Publishing	2/e,2020		
3	Pattern Classification	Richard Duda, Peter Hart, David Stork	Wiley	2/e, 2007		
4	Deep Learning	Ian Goodfellow, Yoshua Bengio, and Aaron Courville	McGraw-Hill	1/e, 1997		
5	Feature Extraction and Image Processing for Computer Vision	Mark Nixon and Alberto Aguado	Academic Press	3/e, 2012		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	The Nature of Statistical Learning Theory	Vladimir Vapnik	Springer-Verlag New York Inc.	2/e, 2010		
2	The Elements of Statistical Learning	Jerome Friedman, Robert Tibshirani, Trevor Hastie	Springer-Verlag New York Inc	9/e, 2017		
3	Pattern Recognition	S.Theodoridis and K.Koutroumbas	Academic Press	4/e, 2009		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://archive.nptel.ac.in/courses/117/105/117105101/				
2	https://archive.nptel.ac.in/courses/117/105/117105101/				
3	https://archive.nptel.ac.in/courses/117/105/117105101/				
4	https://archive.nptel.ac.in/courses/117/105/117105101/				

SEMESTER S4

ADVANCED DATA STRUCTURES

(Common to CS/CD/CM/CA/AM/CB/CN/CC/CU/CI/CG)

Course Code	PECST495	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST303	Course Type	Theory

Course Objectives:

- 1. To equip students with comprehensive knowledge of advanced data structures utilized in cutting-edge areas of computer science, including database management, cyber security, information retrieval, and networked systems.
- **2.** To prepare students to address challenges in emerging fields of computer science by applying advanced data structures to practical, real-world problems.

Module	Syllabus Description			
No.	Synabus Description			
1	Foundational Data Structures- Overview of Arrays and Linked Lists, implementation of pointers and objects, Representing rooted trees, Hashing - Hash Tables, Hash functions, Cuckoo Hashing; Bloom Filters - Count-Min Sketch, Applications to Networks - Click Stream Processing using Bloom Filters, Applications to Data Science - Heavy Hitters and count-min structures.	9		
2	Advanced Tree Data Structures - Balanced Trees - AVL Trees (review), Red-Black Trees, Suffix Trees and Arrays, Segment Trees, Heaps and Related Structures – Binomial heap, Fibonacci Heaps, Merkle Trees, Applications to information Retrieval and WWW - AutoComplete using Tries.	9		

SYLLABUS

3	Specialized Data Structures - Spatial Data Structures – Quadtree, K-D Trees (k-dimensional tree); R-trees; Temporal Data Structures- Persistence, Retroactivity; Search and Optimization Trees – Skip List, Tango Trees; Applications to Data Science - Approximate nearest neighbor search, Applications to information Retrieval and WWW, Posting List intersection.	9
4	Data Structure applications - Distributed and Parallel Data Structures - Distributed Hash Tables (DHTs); Consistent Hashing; Distributed BST; Data Compression and Transformations - Burrows-Wheeler Transform; Histogram; Wavelet Trees; Cryptographic Applications – Hashing.	9

Course Assessment Method (CIE: 40 marks,ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyze): 20 marks

Implement various real world problems using multiple suitable data structures and compare the performance.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• 2 questions will be given from each	
module.	module, out of which 1 question should be	
• Total of 8 Questions,	answered.	
each carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	• Each question carries 9 marks.	
	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Implement and use arrays, linked lists, rooted trees and hashing techniques in various programming scenarios.	К3
CO2	Design and implement advanced tree data structures for information retrieval.	К3
CO3	Use spatial and temporal data structures in data science problems.	K3
CO4	Analyze data structures in special scenarios such as distributed, parallel and data compression areas.	К5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	3						2	3
CO2	3	3	3	3	3						2	3
CO3	3	3	3	3	3						2	3
CO4	3	3	3	3	3						2	2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Reference Books										
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year							
1	Advanced Data Structures: Theory and Applications	Suman Saha, Shailendra Shukla	CRC Press	1/e, 2019							
2	Advanced Data Structures	Peter Brass	Cambridge University Press	1/e, 2008							
3	Introduction to Algorithms	Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein	MIT Press	4/e, 2022							
4	Fundamentals of Computer Algorithms	Ellis Horowitz, SatrajSahani and Rajasekharam	University Press	2/e, 2009							
5	Advanced Data Structures	Reema Thareja, S. Rama Sree	Oxford University Press	1/e, 2018							
6	Data Structures and Algorithm Analysis in C++,	Mark Allen Weiss	Pearson	2/e, 2004.							
7	Design and Analysis of Algorithms	M T Goodrich, Roberto Tamassia	Wiley	1/e, 2021							

	Video Links (NPTEL, SWAYAM)							
Module No.	Link ID							
1	https://web.stanford.edu/class/cs166/							

SEMESTER S4

ECONOMICS FOR ENGINEERS

(Common to All Branches)

Course Code	UCHUT346	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Understanding of finance and costing for engineering operation, budgetary planning and control
- 2. Provide fundamental concept of micro and macroeconomics related to engineering industry
- 3. Deliver the basic concepts of Value Engineering.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Basic Economics Concepts - Basic economic problems – Production Possibility Curve – Utility – Law of diminishing marginal utility – Law of Demand - Law of supply – Elasticity - measurement of elasticity and its applications – Equilibrium- Changes in demand and supply and its effects Production function - Law of variable proportion – Economies of Scale – Internal and External Economies – Cobb-Douglas Production Function	6
2	Cost concepts – Social cost, private cost – Explicit and implicit cost – Sunk cost - Opportunity cost - short run cost curves - Revenue concepts	6

	Firms and their objectives – Types of firms – Markets - Perfect Competition– Monopoly - Monopolistic Competition - Oligopoly (features andequilibrium of a firm)	
3	Monetary System – Money – Functions - Central Banking –Inflation - Causes and Effects – Measures to Control Inflation - Monetary and Fiscal policies – Deflation Taxation – Direct and Indirect taxes (merits and demerits) - GST National income – Concepts - Circular Flow – Methods of Estimation and Difficulties - Stock Market – Functions- Problems faced by the Indian stock market-Demat Account and Trading Account – Stock market Indicators- SENSEX and NIFTY	6
4	Value Analysis and value Engineering - Cost Value, Exchange Value, Use Value, Esteem Value - Aims, Advantages and Application areas of Value Engineering - Value Engineering Procedure - Break-even Analysis - Cost- Benefit Analysis - Capital Budgeting - Process planning	6

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Case study/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	12.5	12.5	50

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B			
Minimum 1 and	• 2 questions will be given from each module, out			
Maximum 2 Questions	of which 1 question should be answered.			
from each module.	• Each question can have a maximum of 2 sub	50		
• Total of 6 Questions,	divisions.	50		
each carrying 3 marks	• Each question carries 8 marks.			
(6x3 =18marks)	(4x8 = 32 marks)			

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
	Understand the fundamentals of various economic issues using laws	K2
CO1	and learn the concepts of demand, supply, elasticity and production	
	function.	
	Develop decision making capability by applying concepts relating to	K3
CO2	costs and revenue, and acquire knowledge regarding the functioning of	
	firms in different market situations.	
CO3	Outline the macroeconomic principles of monetary and fiscal systems,	K2
	national income and stock market.	
	Make use of the possibilities of value analysis and engineering, and	K3
CO4	solve simple business problems using break even analysis, cost benefit	
	analysis and capital budgeting techniques.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	1	-	-	-	-	1	-
CO2	-	-	-	-	-	1	1	-	-	-	1	-
CO3	-	-	-	-	1	-	-	-	-	-	2	-
CO4	-	-	-	-	1	1	-	-	-	-	2	-

	Text Books									
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Managerial Economics	Geetika, Piyali Ghosh and Chodhury	Tata McGraw Hill,	2015						
2	Engineering Economy	H. G. Thuesen, W. J. Fabrycky	PHI	1966						
3	Engineering Economics	R. Paneerselvam	PHI	2012						

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Engineering Economy	Leland Blank P.E, Anthony Tarquin P. E.	Mc Graw Hill	7 TH Edition
2	Indian Financial System	Khan M. Y.	Tata McGraw Hill	2011
3	Engineering Economics and analysis	Donald G. Newman, Jerome P. Lavelle	Engg. Press, Texas	2002
4	Contemporary Engineering Economics	Chan S. Park	Prentice Hall of India Ltd	2001

=

SEMESTER S3/S4

Course Code	UCHUT347	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	2:0:0:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

ENGINEERING ETHICS AND SUSTAINABLE DEVELOPMENT

Course Objectives:

- 1. Equip with the knowledge and skills to make ethical decisions and implement gender-sensitive practices in their professional lives.
- 2. Develop a holistic and comprehensive interdisciplinary approach to understanding engineering ethics principles from a perspective of environment protection and sustainable development.
- 3. Develop the ability to find strategies for implementing sustainable engineering solutions.

SYLLABUS

Module No.	Syllabus Description		
1	Fundamentals of ethics - Personal vs. professional ethics, Civic Virtue, Respect for others, Profession and Professionalism, Ingenuity, diligence and responsibility, Integrity in design, development, and research domains, Plagiarism, a balanced outlook on law - challenges - case studies, Technology and digital revolution-Data, information, and knowledge, Cybertrust and cybersecurity, Data collection & management, High technologies: connecting people and places-accessibility and social impacts, Managing conflict, Collective bargaining, Confidentiality, Role	6	

	of confidentiality in moral integrity, Codes of Ethics.	
	Basic concepts in Gender Studies - sex, gender, sexuality, gender	
	spectrum: beyond the binary, gender identity, gender expression, gender	
	stereotypes, Gender disparity and discrimination in education,	
	employment and everyday life, History of women in Science & Technology,	
	Gendered technologies & innovations, Ethical values and practices in	
	connection with gender - equity, diversity & gender justice, Gender policy	
	and women/transgender empowerment initiatives.	
	Introduction to Environmental Ethics: Definition, importance and	
	historical development of environmental ethics, key philosophical theories	
	(anthropocentrism, biocentrism, ecocentrism). Sustainable Engineering	
	Principles: Definition and scope, triple bottom line (economic, social and	
	environmental sustainability), life cycle analysis and sustainability metrics.	
2	Ecosystems and Biodiversity: Basics of ecosystems and their functions,	6
	Importance of biodiversity and its conservation, Human impact on	
	ecosystems and biodiversity loss, An overview of various ecosystems in	
	Kerala/India, and its significance. Landscape and Urban Ecology:	
	Principles of landscape ecology, Urbanization and its environmental impact,	
	Sustainable urban planning and green infrastructure.	
	Hydrology and Water Management: Basics of hydrology and water cycle,	
	Water scarcity and pollution issues, Sustainable water management practices,	
	Environmental flow, disruptions and disasters. Zero Waste Concepts and	
	Practices: Definition of zero waste and its principles, Strategies for waste	
	reduction, reuse, reduce and recycling, Case studies of successful zero waste	
3	initiatives. Circular Economy and Degrowth: Introduction to the circular	6
	economy model, Differences between linear and circular economies,	
	degrowth principles, Strategies for implementing circular economy practices	
	and degrowth principles in engineering. Mobility and Sustainable	
	Transportation: Impacts of transportation on the environment and climate,	
	Basic tenets of a Sustainable Transportation design, Sustainable urban	
	mobility solutions, Integrated mobility systems, E-Mobility, Existing and	

4

Course Assessment Method (CIE: 50 marks, ESE: 50)

Continuous Internal Evaluation Marks (CIE):

Continuous internal evaluation will be based on individual and group activities undertaken throughout the course and the portfolio created documenting their work and learning. The portfolio will include reflections, project reports, case studies, and all other relevant materials.

- The students should be grouped into groups of size 4 to 6 at the beginning of the semester. These groups can be the same ones they have formed in the previous semester.
- Activities are to be distributed between 2 class hours and 3 Self-study hours.
- The portfolio and reflective journal should be carried forward and displayed during the 7th Semester Seminar course as a part of the experience sharing regarding the skills developed through various courses.

SI. No.	Item	Particulars	Group/I ndividua l (G/I)	Marks
1	Reflective Journal	Weekly entries reflecting on what was learned, personal insights, and how it can be applied to local contexts.	I	5
2	Micro project	 1 a) Perform an Engineering Ethics Case Study analysis and prepare a report 1 b) Conduct a literature survey on 'Code of Ethics for 	G	8
	(Detailed documentation of	Engineers' and prepare a sample code of ethics		
	the project, including methodologies,	2. Listen to a TED talk on a Gender-related topic, do a literature survey on that topic and make a report citing the relevant papers with a specific analysis of the Kerala context	G	5
	findings, and reflections)	 Undertake a project study based on the concepts of sustainable development* - Module II, Module III & Module IV 	G	12
3	Activities	2. One activity* each from Module II, Module III & Module IV	G	15
4	Final Presentation	A comprehensive presentation summarising the key takeaways from the course, personal reflections, and proposed future actions based on the learnings.	G	5
		Total Marks		50

*Can be taken from the given sample activities/projects

Evaluation Criteria:

- **Depth of Analysis**: Quality and depth of reflections and analysis in project reports and case studies.
- Application of Concepts: Ability to apply course concepts to real-world problems and local contexts.
- Creativity: Innovative approaches and creative solutions proposed in projects and reflections.
- **Presentation Skills**: Clarity, coherence, and professionalism in the final presentation.

Course Outcomes (COs)

At the end of the course students should be able to:

	Bloom's Knowledge Level (KL)	
CO1	Develop the ability to apply the principles of engineering ethics in their professional life.	К3
CO2	Develop the ability to exercise gender-sensitive practices in their professional lives	K4
CO3	Develop the ability to explore contemporary environmental issues and sustainable practices.	K5
CO4	Develop the ability to analyse the role of engineers in promoting sustainability and climate resilience.	K4
CO5	Develop interest and skills in addressing pertinent environmental and climate-related challenges through a sustainable engineering approach.	К3

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1						3	2	3	3	2		2
CO2		1				3	2	3	3	2		2
CO3						3	3	2	3	2		2
CO4		1				3	3	2	3	2		2
CO5						3	3	2	3	2		2

		Reference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Ethics in Engineering Practice and Research	Caroline Whitbeck	Cambridge University Press & Assessment	2nd edition & August 2011
2	Virtue Ethics and Professional Roles	Justin Oakley	Cambridge University Press & Assessment	November 2006
3	Sustainability Science	Bert J. M. de Vries	Cambridge University Press & Assessment	2nd edition & December 2023
4	Sustainable Engineering Principles and Practice	Bhavik R. Bakshi,	Cambridge University Press & Assessmen	2019
5	Engineering Ethics	M Govindarajan, S Natarajan and V S Senthil Kumar	PHI Learning Private Ltd, New Delhi	2012
6	Professional ethics and human values	RS Naagarazan	New age international (P) limited New Delhi	2006.
7	Ethics in Engineering	Mike W Martin and Roland Schinzinger,	Tata McGraw Hill Publishing Company Pvt Ltd, New Delhi	4" edition, 2014

Suggested Activities/Projects:

Module-II

- Write a reflection on a local environmental issue (e.g., plastic waste in Kerala backwaters or oceans) from different ethical perspectives (anthropocentric, biocentric, ecocentric).
- Write a life cycle analysis report of a common product used in Kerala (e.g., a coconut, bamboo or rubber-based product) and present findings on its sustainability.
- Create a sustainability report for a local business, assessing its environmental, social, and economic impacts
- Presentation on biodiversity in a nearby area (e.g., a local park, a wetland, mangroves, college campus etc) and propose conservation strategies to protect it.
- Develop a conservation plan for an endangered species found in Kerala.
- Analyze the green spaces in a local urban area and propose a plan to enhance urban ecology using native plants and sustainable design.
- Create a model of a sustainable urban landscape for a chosen locality in Kerala.

Module-III

- Study a local water body (e.g., a river or lake) for signs of pollution or natural flow disruption and suggest sustainable management and restoration practices.
- Analyse the effectiveness of water management in the college campus and propose improvements calculate the water footprint, how to reduce the footprint, how to increase supply through rainwater harvesting, and how to decrease the supply-demand ratio
- Implement a zero waste initiative on the college campus for one week and document the challenges and outcomes.
- Develop a waste audit report for the campus. Suggest a plan for a zero-waste approach.
- Create a circular economy model for a common product used in Kerala (e.g., coconut oil, cloth etc).
- Design a product or service based on circular economy and degrowth principles and present a business plan.
- Develop a plan to improve pedestrian and cycling infrastructure in a chosen locality in Kerala

Module-IV

- Evaluate the potential for installing solar panels on the college campus including cost-benefit analysis and feasibility study.
- Analyse the energy consumption patterns of the college campus and propose sustainable alternatives to reduce consumption What gadgets are being used? How can we reduce demand using energy-saving gadgets?
- Analyse a local infrastructure project for its climate resilience and suggest improvements.
- Analyse a specific environmental regulation in India (e.g., Coastal Regulation Zone) and its impact on local communities and ecosystems.
- Research and present a case study of a successful sustainable engineering project in Kerala/India (e.g., sustainable building design, water management project, infrastructure project).
- Research and present a case study of an unsustainable engineering project in Kerala/India highlighting design and implementation faults and possible corrections/alternatives (e.g., a housing complex with water logging, a water management project causing frequent floods, infrastructure project that affects surrounding landscapes or ecosystems).

SEMESTER S4

OPERATING SYSTEMS LAB

(Common to CS/CD/CM/CR/CA/AI/CB/CN/CC/CU/CI/CG)

Course Code	PCCSL407	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GYEST204	Course Type	Lab

Course Objectives:

- 1. To familiarize various Linux commands related to Operating systems.
- **2.** To give practical experience for learners on implementing different functions of Operating systems such as process management, memory management, and disk management.

Expt. No.	Experiments				
1	Familiarisation with basic Linux programming commands: ps, strace, gdb, strings, objdump, nm, file, od, xxd, time, fuser, top				
2	 Use /proc file system to gather basic information about your machine: (a) Number of CPU cores (b) Total memory and the fraction of free memory (c) Number of processes currently running. (d) Number of processes in the running and blocked states. (e) Number of processes forked since the last bootup. How do you compare this value with the one in (c) above? (f) The number of context switches performed since the last bootup for a particular process. 				
3	Write a simple program to print the system time and execute it. Then use the / proc file system to determine how long this program (in the strict sense, the corresponding process) ran in user and kernel modes.				

	Create a new process using a fork system call. Print the parent and child process IDs. Use
4	the pstree command to find the process tree for the child process starting from the init
	process.
	Write a program to add two integers (received via the command line) and compile it to an
	executable named "myadder". Now write another program that creates a new process
5	using a fork system call. Make the child process add two integers by replacing its image
	with the " myadder " image using execvp system call.
	Create a new process using a fork system call. The child process should print the string
6	"PCCSL407" and the parent process should print the string "Operating Systems Lab".
	Use a wait system call to ensure that the output displayed is "PCCSL407 Operating
	Systems Lab"
	Inter-process Communication (https://www.linuxdoc.org/LDP/lpg/node7.html)
	(a) Using Pipe – Evaluate the expression $\sqrt{b^2 - 4ac}$. The first process
	evaluates b^2 . The second process evaluates $4ac$ and sends it to the first
	process which evaluates the final expression and displays it.
	(b) Using Message Queue - The first process sends a string to the second
	process. The second process reverses the received string and sends it back
7	to the first process. The first process compares the original string and the
	reversed string received from the second one and then prints whether the
	string is a palindrome or not.
	(c) Using Shared Memory - The first process sends three strings to the second
	process. The second process concatenates them to a single string (with
	whitespace being inserted between the two individual strings) and sends it
	back to the first process. The first process prints the concatenated string in
	the flipped case, that is if the concatenated string is "Hello S4 Students",
	the final output should be "hELLO s4 sTUDENTS"
	Write a multithreaded program that calculates the mean, median, and standard deviation
	for a list of integers. This program should receive a series of integers on the command line
0	and will then create three separate worker threads. The first thread will determine the
8	mean value, the second will determine the median and the third will calculate the standard
	deviation of the integers. The variables representing the mean, median, and standard
	deviation values will be stored globally. The worker threads will set these values, and the
	parent thread will output the values once the workers have exited.

9	Input a list of processes, their CPU burst times (integral values), arrival times, and priorities. Then simulate FCFS, SRTF, non-preemptive priority (a larger priority number implies a higher priority), and RR (quantum = 3 units) scheduling algorithms on the process mix, determining which algorithm results in the minimum average waiting time (over all processes).
10	Use semaphores to solve the readers-writers problem with writers being given priority over readers.
11	Obtain a (deadlock-free) process mix and simulate the banker's algorithm to determine a safe execution sequence.
12	Obtain a process mix and determine if the system is deadlocked.
13	Implement the deadlock-free semaphore-based solution for the dining philosopher's problem.
14	 Simulate the address translation in the paging scheme as follows: The program receives three command line arguments in the order size of the virtual address space (in megabytes) page size (in kilobytes) a virtual address (in decimal notation) The output should be the physical address corresponding to the virtual address in <frame number,="" offset=""/> format. You may assume that the page table is implemented as an array indexed by page numbers. (NB: If the page table has no index for the page number determined from the virtual address, you may just declare a page table miss!)
15	Simulate the FIFO, LRU, and optimal page-replacement algorithms as follows: First, generate a random page-reference string where page numbers range from 0 to 9. Apply the random page-reference string to each algorithm, and record the number of page faults incurred by each algorithm. Assume that demand paging is used. The length of the reference string and the number of page frames (varying from 1 to 7) are to be received as command line arguments.
16	Simulate the SSTF, LOOK, and CSCAN disk-scheduling algorithms as follows: Your program will service a disk with 5,000 cylinders numbered 0 to 4,999. The program will generate a random series of 10 cylinder requests and service them according to each of the algorithms listed earlier. The program will be passed the initial position of the disk head (as a parameter on the command line) and will report the total number of head movements required by each algorithm.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/ Preparatory work/Design/ Algorithm	Conduct of experiment/ Execution of work/ troubleshooting/ Programming	Result with valid inference/ Quality of Output	Viva voce	Record	Total
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate the use of various systems calls in Operating Systems.	К3
CO2	Implement process creation and inter-process communication in Operating Systems	K3
CO3	Compare the performance of various CPU scheduling algorithms	K4
CO4	Compare the performance of various disk scheduling algorithms	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3				3				3
CO2	3	3	3	3				3				3
CO3	3	3	3	3				3				3
CO4	3	3	3	3				3				3
CO5	3	3	3	3				3				3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Operating Systems: Three Easy Pieces	Dusseau, Remzi		1/e, 2018		
2	Linux Kernel Development	Robert Love	Pearson	3/e, 2018		
3	Unix Network Programming - Volume 2: Interprocess Communications	Richard Stevens	Prentice Hall	2/e, 1999		

	Reference Books/Websites								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	The Design of the UNIX Operating System	Maurice J. Bach	Prentice Hall of India	1/e, 1994					
2	The Little Book of Semaphores	Allen B. Downey	Green Tea Press	1/e, 2016					

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/105/106105214/					
2	https://www.youtube.com/playlist?list=PLDW872573QAb4bj0URobvQTD41IV6gRkx					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
 - Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER S4

DBMS LAB

(common t			
Course Code	PCCSL408	CIE Marks	50

(Common to CS/CD/CR/CA/AD/AI/CB/CN/CC/CU/CI/CG)

Course Coue	I CCSL400		50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
	_		
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- 1. To equip students with comprehensive skills in SQL, PL/SQL, and NoSQL databases.
- **2.** To enable the learner to proficiently design, implement, and manage relational and non-relational databases to meet diverse data management needs

Expt. No.	Experiments			
1	Design a database schema for an application with ER diagram from a problem description.			
2	Creation of database schema - DDL (create tables, set constraints, enforce relationships, create indices, delete and modify tables). Export ER diagram from the database and verify relationships (with the ER diagram designed in step 1).			
3 Database initialization - Data insert, Data import to a database (bulk import u SQL Commands).				
4	Practice SQL commands for DML (insertion, updating, altering, deletion of data, and viewing/querying records based on condition in databases).			
5	Implementation of various aggregate functions, Order By, Group By & Having clause in SQL.			
6	Implementation of set operators nested queries, and join queries.			
7	Practice of SQL TCL DCL commands like Rollback, Commit, Savepoint,Practice of SQL DCL commands for granting and revoking user privileges.			
8	Practice of SQL commands for creation of views and assertions.			

9	Creation of Procedures, Triggers and Functions.
10	Creation of Packages and cursors.
11	Design a database application using any front-end tool for any problem selected in experiment number 1. The application constructed should have five or more tables**.
12	Perform basic CRUD (Create, Read, Update, Delete) operations on a Cassandra table.
13	Write and execute CQL queries to retrieve specific data from Cassandra tables
14	Create a simple application using Mongodb with python

** The problem must be designed to convey the difference of NoSQL from SQL databases.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with valid			
Preparatory	Execution of work/	inference/	Viva	Record	Total
work/Design/ troubleshooting/		Quality of	voce	Record	Totai
Algorithm	Algorithm Programming				
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop database schema for a given real world problem-domain using standard design and modeling approaches	К3
CO2	Construct queries using SQL for database creation, interaction, modification, and updation.	К3
CO3	Plan and implement triggers and cursors, procedures, functions, and control structures using PL/SQL	К3
CO4	Perform CRUD operations in NoSQL Databases	К3
CO5	Design database applications using front-end tools and back-end DBMS	К5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	1						3		3
CO2	3	3	3	1						3		3
CO3	3	3	3	1						3		3
CO4	3	3	3	2	3					3		3
CO5	3	3	3	2	3					3	3	3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fundamentals of Database Systems	Elmasri, Navathe	Pearson	7/e, 2017			
2	Professional NoSQL	Shashank Tiwari	Wiley	1/e, 2011			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Database System Concepts,	Sliberschatz Korth and S. Sudarshan	McGraw Hill,	7/e, 2017				
2	NoSQL for Dummies	Adam Fowler	John Wiley & Sons	1/e, 2015				
3	NoSQL Data Models: Trends and Challenges (Computer Engineering: Databases and Big Data),	Olivier Pivert	Wiley	1/e, 2018				
4	Making the Sense of NoSQL : A guide for Managers and Rest of us.	Dan McCreary and Ann Kelly	Manning	1/e, 2014				

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc21_cs04/preview				
2	https://onlinecourses.nptel.ac.in/noc21_cs04/preview				
3	https://onlinecourses.nptel.ac.in/noc21_cs04/preview				
4	https://archive.nptel.ac.in/courses/106/104/106104135/				

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 5

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

SEMESTER S5

COMPUTER NETWORKS

(Common to CS/CD/CM/CR/CA/AD/AI/CB/CN/CU/CI)

Course Code	PCCST501	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the core concepts of computer networking.
- 2. To develop a big picture of the internetworking implementation on Linux-based systems.
- 3. To impart an overview of network management concepts.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	Overview of the Internet, Protocol layering (Book 1 Ch 1) Application Layer: Application-Layer Paradigms, Client-server applications - World Wide Web and HTTP, FTP. Electronic Mail, DNS. Peer-to-peer paradigm - P2P Networks, Case study: BitTorrent (Book 1 Ch 2)	6
2	 Transport Layer: Services, Protocols, UDP, TCP (Book 1 Ch 3). Hands-on: Sockets Introduction, Elementary TCP Sockets, TCP Client/Server Example, I/O Multiplexing: The select and poll Functions (Book 2 Ch 3 to 6), Elementary UDP Sockets (Book 2 Ch 8), Advanced I/O Functions (Book 2 Ch 14) Network Layer: Introduction, Network-layer protocols, Unicast routing, Multicast routing - Multicasting Basics, Intra domain and inter-domain routing, Next generation IP (Book 1 Ch 4), Quality of Service (Book 1 Ch 8) Hands-on: Linux Kernel Implementation of Routing Table and Caches, Routing Cache Implementation Overview, Adding new entry in the Routing 	18

3	Data-Link Layer: Data link control (DLC), Multiple access protocols (MAC), Link-layer addressing, Ethernet protocol, Connecting devices (Book 1 Ch 5) Wireless LANs, Mobile IP (Book 1 Ch 6) <i>Hands-on: Datalink Provider Interface, SOCK_PACKET and PF_PACKET</i> (Book 2 Ch 29)	11
4	SNMP, ASN.1 (Book 1 Ch 9)Physical Layer: Data and signals, Digital transmission, Analog transmission,Bandwidth utilization, Transmission media (Book 1 Ch 7)	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the internetworking design in terms of protocol stack and the role of various application layer protocols	K2
CO2	Illustrate the functions of the transport layer from connectionless and connection-oriented perspectives	К3
CO3	Identify how the network layer achieves host-to-host connectivity and caters to the diverse service requirements of the host applications	К3
CO4	Explain the nuances of the data link layer design and demonstrate the various data link layer protocols	K3
C05	Describe the fundamental characteristics of the physical layer and understand how the physical layer supports the functionalities of the top layers	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3											3
CO2	3	2										3
CO3	3	2			2							3
CO4	3	2										3
CO5	3											3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computer Networks: A Top- Down Approach	Behrouz A Forouzan	McGraw Hill	SIE, 2017			
2	Unix Network Programming, Volume 1: The Sockets Networking API	W. Richard Stevens, Andrew M. Rudoff, Bill Fenner	Pearson Education	3/e, 2004			
3	TCP/IP Architecture, design, and implementation in Linux	Sameer Seth M. Ajaykumar Venkatesulu	Wiley	1/e, 2008			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer Networking: A Top- Down Approach Featuring Internet	J. F. Kurose and K. W. Ross	Pearson Education	8/e, 2022				
2	Computer Networks, A Systems Approach	L. L. Peterson and B. S. Davie	Morgan Kaufmann	5/e, 2011				

	Video Links (NPTEL, SWAYAM)					
No.	Link ID					
1	https://nptel.ac.in/courses/106/105/106105183/					

DESIGN AND ANALYSIS OF ALGORITHMS

(Common to CS/CD/CM/AM/CB/CN/CU/CG)

Course Code	PCCST502	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs 30 Min.
Prerequisites (if any)	PCCST303	Course Type	Theory

Course Objectives:

- 1. To gain a foundational understanding of algorithms and their analysis.
- **2.** To develop problem-solving skills using various algorithm design paradigms like divide and conquer, dynamic programming, etc.
- **3.** To understand the concepts of tractable and intractable problems, and different complexity classes (P, NP, NP-hard, NP-complete).

SYLLAB	US
--------	----

Module	Syllabus Description	Contact
No.		Hours
1	Algorithms – Characteristics, Criteria for Analysing Algorithms; Time and Space Complexity - Best, Worst, and Average Case Complexities; Asymptotic Notations and their properties; Time and Space Complexity Calculation of simple algorithms; Analysis of Recursive Algorithms - Recurrence Equations, Solution of Recurrence Equations : Iteration Method, Recursion Tree Method, Substitution method and Master's Theorem (proof not expected); Balanced Search Trees - AVL Trees (Insertion and deletion operations with all rotations in detail, algorithms not expected)	11

2	 Disjoint Sets - Disjoint set operations, Union and find algorithms, Analysis of union by rank with path compression, Connected components of a Graph; Graphs – Representations, Traversals : BFS, DFS and their analysis, Strongly Connected Components; Topological Sorting. Divide and Conquer Strategy – Control Abstraction, Merge Sort, Strassen's Matrix Multiplication, Analysis. Greedy Strategy - Control Abstraction, Fractional Knapsack; Minimum Cost Spanning Tree – Kruskal's and Prim's, Analysis; Shortest Path Problem – Dijkstra's Algorithm, Analysis; Dynamic Programming - Control Abstraction, Optimality Principle, Matrix Chain Multiplication, Analysis; All Pairs Shortest Path Algorithm - Floyd-Warshall Algorithm, Analysis; Backtracking - Control Abstraction, N – Queens Problem, Algorithm. 	11
4	Branch and Bound - Control Abstraction, Travelling Salesman Problem, Algorithm; Complexity - Tractable and Intractable Problems; Complexity Classes : P, NP, NP- Hard and NP-Complete Classes; NP Completeness proof - Clique Problem and Vertex Cover Problem; Approximation algorithms - Bin Packing; Randomized Algorithms - Definitions of Monte Carlo and Las Vegas algorithms; Randomized version of Quick Sort algorithm with analysis.	11

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Analyze any given algorithm and express its time and space complexities in asymptotic notations.	K4
CO2	Solve the recurrence equations using Iteration, Recurrence Tree, Substitution and Master's Method to compute time complexity of algorithms.	K3
СО3	Illustrate the operations of advanced data structures like AVL trees and Disjoint sets.	К3
CO4	Illustrate the representation, traversal and different operations on Graphs.	К3
CO5	Demonstrate Divide-and-conquer, Greedy Strategy, Dynamic programming, Branch-and Bound and Backtracking algorithm design techniques.	К2
CO6	Classify a problem as computationally tractable or intractable, and discuss strategies to address intractability.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2								3
CO2	3	3	3									2
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3	2								2
CO6	3	3	3	2								2

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Introduction to Algorithms	T.H.Cormen, C.E.Leiserson, R.L.Rivest, C. Stein,	Prentice-Hall India	4/e, 2018						
2	Fundamentals of Computer Algorithms	Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran,	Orient Longman Universities Press	2/e, 2008						
3	Computer Algorithms, Introduction to Design and Analysis	Sara Baase and Allen Van Gelder	Pearson Education	3/e, 2009						

	Reference Books									
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year						
1	Design and Analysis of Algorithms	Michael T. Goodrich Roberto Tamassia	Wiley	1/e, 2021						
2	Algorithm Design	Jon Kleinberg, Eva Tardos	Pearson Education	1/e, 2005						
3	Algorithms	Robert Sedgewick, Kevin Wayne	Pearson Education	4/e, 2011						
4	Fundamentals of Algorithmics	GIIIes Brassard, Paul Brately	Pearson Education	1/e, 1996						
5	The Algorithm Design Manual	Steven S. Skiena	Springer	2/e, 2008						

	Video Links (NPTEL, SWAYAM)							
Module No.								
1	https://archive.nptel.ac.in/courses/106/106/106106131/							
2	https://www.coursera.org/learn/dynamic-programming-greedy-algorithms							
3	https://online.stanford.edu/courses/soe-ycsalgorithms1-algorithms-design-and-analysis- part-1							
4	https://online.stanford.edu/courses/soe-ycs0001-algorithms-design-and-analysis-part-2							

DATA ANALYTICS

Course Code	PCCDT503	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To equip students with the knowledge and skills necessary to analyze and interpret complex data sets to extract useful patterns and relationships between data.
- **2.** To teach how to handle data effectively, perform exploratory data analysis, build predictive models and communicate findings through data visualization.

Module No.	Syllabus Description					
1	Introduction to Data Analytics-Analytics Process Model, Analytical Model Requirements. Data Analytics Life Cycle overview, Probability calculus - probability distributions, Hypothesis Testing - Basic definitions. Proximity measures - Data Objects, Attribute types, Dissimilarity and Similarity measures Statistical Description of data - Central tendency, Dispersion, Range, Quartiles, Variance, Standard Deviation, and Interquartile Range.	11				
2	Association of Two Variables-Summarizing the Distribution of Two Discrete Variables, Contingency Tables for Discrete Data, Joint, Marginal, and Conditional Frequency Distributions, Graphical Representation of Two Nominal or Ordinal Variables, Measures of Association for Two Discrete Variables, Association Between Ordinal and Continuous Variables, Visualization of Variables from Different Scales.	11				

3	 Data Preprocessing – Cleaning, Integration, Reduction, Transformation, Discretization Mining Frequent Patterns - Associations, Correlations, and Apriori Algorithms. Classification - General Approach to Classification, ID3, Attribute selection measures, Naive Bayesian Classification. Clustering-K-Means, Agglomerative versus Divisive Hierarchical Clustering, BIRCH, DBSCAN. 	11
4	Text Processing - Boolean retrieval, Example IR problem, inverted index, processing Boolean queries, tokenization, stemming, phrase queries, vector space model, finite automata and language model, query likelihood model, naïve bayes text classification.	11

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome			
CO1	Explain the key concepts of data analytics	K2		
CO2	Describe the tools to analyse, summarize, and visualize associations between two variables and various measures of association	K2		
CO3	Use the concepts of association rule mining and the basic clustering and classification algorithm on small datasets.	К3		
CO4	Explain the basics of text analytics and text classification	K2		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3

	Text Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year					
1	Introduction to Statistics and DataAnalysis	Christian Heumann, Michael Schomaker	Springer	1/e, 2016					
2	Data Mining Concepts and Techniques	Jiawei Han, Micheline Kamber	Elsevier	3/e, 2012					

	Reference Books					
SI. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year		
1	Introduction To Data Mining	Pang-Ning Tan, Michael Steinbach, Vipin Kumar	Pearson Education	1/e, 2016		
2	Analytics in a Big Data World: The Essential Guide to Data Science and its Business Intelligence and Analytic Trends	Bart Baesens	John Wiley Sons	1/e, 2014		
3	Mining Text Data	Charu C. Aggarwal, ChengXiang Zhai	Springer	1/e, 2012		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/106107220					
2	https://archive.nptel.ac.in/courses/106/105/106105174/					
3	https://nptel.ac.in/courses/110106072					
4	https://archive.nptel.ac.in/courses/106/105/106105158/					

BIG DATA PROCESSING

Course Code	PBCDT504	CIE Marks	60
Teaching Hours/Week (L:T:P:R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide an overview of storage, retrieval and processing of big data.
- 2. To introduce the tools and techniques employed to handle Big Data using technologies such as Map Reduce, Hadoop, Hbase, Pig, Hive and Spark.

Module No.	Syllabus Description		
1	Introduction to Big data and Hadoop Distributed File System:-Evolution of Big data, Big data characteristics, RDBMS and Big Data.History of Hadoop, Hadoop Ecosystem and Core Components, HDFSArchitecture: Blocks, Name nodes and Data nodes, Using HDFS Files -Basic File system Operations, Hadoop Specific File Types. Anatomy of a fileread and write.	11	
2	MapReduce Programming:-Data Processing with MapReduce: Execution Pipeline, Runtime Coordination and Task Management in MapReduce, Designing MapReduce implementations: Using MapReduce as a framework for parallel processing, Face Recognition Example: Simple Data Processing with MapReduce, 	11	

3	HBase and Stream Data Model:-HBase Architecture, HBase Schema Design, Introduction to StreamConcepts, Stream Data Model and Architecture, Sampling Data in a Stream,Filtering Streams, Counting Distinct Elements in a Stream.	11
4	 Hive, Pig, Spark:- Hive - Features, Data types and file formats, primitive and collection data types, HiveQL-Creating tables, Dropping Tables, Alter table. Pig : Data Model, Pig Latin: Structure, Functions, Spark: Storage layers for spark, Core spark concepts, RDD basics, RDD Operations. Projects using R,Python,Java 	11

Suggestion on Project Topics

Log File Analysis: Collect log files from web servers or applications and analyze them to extract useful information like error rates, traffic patterns, and popular pages.

Sentiment Analysis on Social Media Data: Collect tweets or social media posts and perform sentiment analysis to understand public opinion on a particular topic or product.

Recommendation System: Build a recommendation system based on user behavior data, such as purchase history or viewing patterns.

Word Count with MapReduce: Implement the classic word count problem where you count the frequency of each word in a large set of text documents.

Course Assessment Method

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 2 marks (8x2 =16 marks) 	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 6 marks. (4x6 = 24 marks)	40

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Explain the principles of big data and distributed systems, including the characteristics of large datasets and the fundamentals of building and maintaining reliable, scalable, distributed systems.	К2
CO2	Infer the mechanisms of distributed storage and processing, with a specific focus on the role of HDFS (Hadoop Distributed File System) in effective data storage.	К3
CO3	Model the distributed processing of large data sets across clusters using simple programming models.	К3
CO4	Identify and understand the fundamentals of stream computing and the usage of HBase.	K2
CO5	Apply the fundamental features and components of Hive, Pig, and Spark for data processing.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	2							3
CO5	3	3	3	3	3							3

		Text Books			
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year	
1	Professional Hadoop Solutions	Boris Lublinsky, Kevin T. Smith, Alexey Yakubovich	Wrox	1/e, 2013	
2	The Art of R Programming: A Tour of Statistical Software Design	Norman Matloff	No Starch Press	1/e, 2011	
3	Learning Spark, Lightning- Fast Data Analytics	Holden Karau, Andy Konwinski, Patrick Wendell, Matei Zaharia	O'Reilly	2/e, 2020	
4	Programming Hive	Jason Rutherglen, Dean Wampler, Edward Capriolo	O'Reilly	1/e, 2012	
5	Mining of Massive Datasets	Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman,	Cambridge University Press	3/e, 2020	
6	BIG DATA, Black Book	Black Book TM	DreamTech Press	1/e, 2016	
7	R for Everyone: Advanced Analytics and Graphics	Jared P. Lander	Pearson Education	2/e, 2018	

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Big Data and Analytics	Seema Acharya, Subhasni Chellappan	Wiley	2/e, 2019		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://youtu.be/r5kRLIpuA https://onlinecourses.nptel.ac.in/big data computing					

PBL Course Elements

L: Lecture	R: Project (1 Hr.), 2 Faculty Members				
(3 Hrs.)	Tutorial	Practical	Presentation		
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)		
Group discussion	Protect Analysis 1 Data Collection		Evaluation		
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)		
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video		

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

Assessment and Evaluation for Project Activity

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

SOFTWARE PROJECT MANAGEMENT

(Common CS/CD/CM/CR/CA/AD/AM)

Course Code	PECST521	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	PECST411	Course Type	Theory

Course Objectives:

- 1. To learn the techniques to effectively plan, manage, execute, and control projects within time and cost targets with a focus on Information Technology and Service Sector.
- 2. To learn agile project management techniques such as Scrum and DevOps.

Module No.	Syllabus Description			
1	Project scheduling and feasibility study : - Project Overview and Feasibility Studies - Identification, Market and Demand Analysis, Project Cost Estimate, Financial Appraisal; Project Scheduling - Project Scheduling, Introduction to PERT and CPM, Critical Path Calculation, Precedence Relationship, Difference between PERT and CPM, Float Calculation and its importance, Cost reduction by Crashing of activity.	8		
2	Resource Scheduling, Cost Control and Project management Features :- Cost Control and Scheduling - Project Cost Control (PERT/Cost), Resource Scheduling & Resource Levelling; Project Management Features - Risk Analysis, Project Control, Project Audit and Project Termination.	8		
3	Agile Project Management :-Agile Project Management - Introduction, Agile Principles, Agilemethodologies, Relationship between Agile Scrum, Lean, DevOps and ITService Management (ITIL;. Other Agile Methodologies - Introduction toXP, FDD, DSDM, Crystal.	9		

	Scrum and DevOps in project management :-				
	Scrum - Various terminologies used in Scrum (Sprint, product backlog,				
	sprint backlog, sprint review, retro perspective), various roles (Roles in				
4	Scrum), Best practices of Scrum, Case Study; DevOps - Overview and its	11			
4	Components, Containerization Using Docker, Managing Source Code and	11			
	Automating Builds, Automated Testing and Test-Driven Development,				
	Continuous Integration, Configuration Management, Continuous				
	Deployment, Automated Monitoring, Case Study.				

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand how effectively plan, and schedule projects within time and cost targets	К2
CO2	Apply project estimation and evaluation techniques to real world problem	К3
CO3	Discuss different Agile Project Methodologies	K2
CO4	Apply various SCRUM practices in project management.	K3
CO5	Demonstrate the techniques used in DevOps.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3								2	2
CO2	3	3	3								2	2
CO3	3	3	3								2	2
CO4	3	3	3								2	2
CO5	3	3	3								2	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Succeeding with Agile: Software Development Using Scrum	Mike Cohn	Addison-Wesley	1/e, 2009			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Agile Product Management with Scrum	Roman Pichler	Addison-Wesley	1/e, 2010			
2	Agile Project Management with Scrum	Ken Schwaber	Microsoft Press	1/e, 2004			

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-cs70/				
2	https://www.youtube.com/watch?v=TPEgII1OilU				
3	https://www.youtube.com/watch?v=7Bxdds2siU8				

ARTIFICIAL INTELLIGENCE

Course Code	PECST522	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To lay a solid foundation of the important abstractions, techniques, and reasoning for intelligent systems.
- 2. To enable the learners to understand the basic principles of Reinforcement Learning.

Module No.	Syllabus Description					
1	Introduction to Artificial Intelligence:-Introduction, Foundation and history of AI Agents and Environments; The concept of rationality; The nature of environments, Structure of agents.Problem solving Agents Well-defined problems and solutions, Formulating problems; Example problems- vacuum world, 8-puzzle, 8-queens.					
2	Searching:- Depth First Search, Breadth First Search, Iterative Deepening Search. Heuristic Search strategies - Heuristic functions, The effect of heuristic accuracy on performance; Generate and test, Greedy best first search, A* algorithm, Constraint satisfaction problems, Adversarial search - Games, Optimal Decision in games, The minimax algorithm, Alpha–beta pruning.	10				
3	Knowledge-Based Agents :- The Wumpus World, Logic, Propositional Logic, Reasoning Patterns in Propositional Logic, First order logic, Inference in first order logic, propositional vs. first order inference, unification & lifts forward chaining, Backward chaining.	8				

	Reinforcement Learning :- Learning from Rewards, Passive Reinforcement	
	Learning, Active Reinforcement Learning, Generalization in Reinforcement	10
4	Learning, Policy Search, Apprenticeship and Inverse Reinforcement	10
	Learning, Applications of Reinforcement Learning	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain how intelligent agents can solve problems.	K2
CO2	Use the different types of search methods to solve various problems.	К3
CO3	Formulate knowledge representation and examine resolution in propositional logic and first order logic.	К3
CO4	Utilize reinforcement learning techniques to create intelligent agents.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	-	-	-	-	-	-	-	2
CO2	3	3	3	2	-	-	-	-	-	-	-	2
CO3	2	2	2	2	-	-	-	-	-	-	-	2
CO4	3	2	2	2	-	-	-	-	-	-	-	2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	AI – A Modern Approach	Stuart Russel, Peter Norvig	Pearson Education	4/e, 2021			
2	Artificial Intelligence	Kevin Knight, Elaine Rich, Shivashankar B. Nair	Tata McGraw-Hill	3/e, 2009			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Artificial Intelligence and Expert Systems	Dan W. Patterson	Pearson Education	1/e, 2015			
2	Artificial Intelligence: Structures and Strategies for Complex Problem Solving	George F. Luger	Pearson Education	6/e, 2009			
3	Artificial Intelligence : Making a System Intelligent	Nilakshi Jain	Wiley	1/e, 2019			

Video Links (NPTEL, SWAYAM)					
Module No.					
1	https://www.youtube.com/watch?v=X_Qt0U66aH0				
2	https://www.youtube.com/watch?v=te1K8on1Pk0				
3	https://www.youtube.com/watch?v=SEJhMO1IXZs				
4	https://youtu.be/YaPSPu7K9S0?si=DizMPlZ9uVSy50iG				

DATA PRIVACY AND SECURITY

Course Code	PECDT523	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a fundamental understanding of data security, encryption and confidentiality.
- **2.** To introduce students to the concepts of hash functions, digital signatures and data hiding within text and images.
- 3. To provide learners an overview of legal and ethical issues in data.

Module No.	Syllabus Description					
	Introduction to Security and Ciphers					
	Introduction: Security goals, Cryptographic Attacks, Services and Mechanism,					
1	Techniques. Traditional Symmetric Key Ciphers: Introduction, Substitution	12				
1	Ciphers, Transposition Ciphers, Stream and Block Ciphers. Introduction to	12				
	Modern Symmetric-Key Ciphers: Modern Block Ciphers, Modern Stream					
	Ciphers.					
	Symmetric and Asymmetric encryption algorithms					
	Data Encryption Standard (DES): Introduction, DES Structure, DES Analysis,					
2	Multiple DES, Security of DES. Advanced Encryption Standard (AES):	12				
2	Introduction, Transformations, Key Expansion, AES Ciphers, Analysis of AES.	12				
	Asymmetric-Key Cryptography: Introduction, RSA Cryptosystem, Rabin					
	Cryptosystem, Elgamal Cryptosystem, Elliptic Curve Crypto systems.					
	Hash Functions, Digital Signature and Data Hiding					
3	Cryptographic Hash Functions: Introduction, Iterated Hash function, SHA-512,	12				
	WHIRLPOOL. Digital Signature: Comparison, Process, Services, Attacks on					

 Watermarking, Detecting Malicious Tampering. Privacy, Legal and Ethical Issues Privacy: Privacy Concepts, Privacy Principles and Policies, Authentication and Privacy, Data Mining, Privacy on the Web, E-Mail Security, Impacts on Emerging Technologies. Legal and Ethical Issues in Computer Security: Protecting Programs and Data, Information and the Law, Rights of Employees 		Digital Signature, Digital Signature Standard. Data Hiding in Text: Basic Features, Applications of Data Hiding, Watermarking, Intuitive Methods, Simple Digital Methods, Data Hiding in Text, Innocuous Text, Mimic Functions. Data Hiding in Images: LSB Encoding, BPCS Steganography, Lossless Data Hiding, Spread Spectrum Steganography, Data Hiding by Quantization, Patchwork, Signature Casting in Images, Transform Domain Methods, Robust Data Hiding in JPEG Images, Robust Frequency Domain	
and employers, Redress for Software Failures, Computer Crime, Ethical Issues	4	Privacy: Privacy Concepts, Privacy Principles and Policies, Authentication and Privacy, Data Mining, Privacy on the Web, E-Mail Security, Impacts on Emerging Technologies. Legal and Ethical Issues in Computer Security: Protecting Programs and Data, Information and the Law, Rights of Employees	12

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate a thorough understanding of core data security concepts, including the operation and application of different symmetric key ciphers to effectively safeguard information.	К2
CO2	Apply a range of encryption standards to achieve robust data protection and confidentiality, ensuring secure transmission and storage of sensitive information.	К3
СО3	Gain proficiency in the use of hash functions for data security and master techniques for embedding and concealing data within text and images to safeguard sensitive information.	К2
CO4	Acquire a comprehensive understanding of privacy principles, authentication methods and security protocols for web and email communications, ensuring secure and private digital interactions.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	2		-			-		3
CO2	2	2	3	3	2	2	-			-		3
CO3	3	2	2	2	3	2	-			-		3
CO4	3	3	3	2	2	3	-			-		3

Text Books								
Sl. No	No Title of the Book Name of the Author/s Name of the Publisher				Edition and Year			
1	Cryptography and Network Security	Behrouz A. Forouzan, Dedeep Mukhopadhyay			2/e, 2013			
2	Data Privacy and Security	Salomon, David Springer		Springer	1/e, 2003			
3	Security in Computing	Charles Pfleeger, Shari Lawrence Pfleeger		PHI	5/e, 2015			
	Ret	ference Books						
Sl. No	Sl. No Title of the Book Name of the Author/s Publisher							
1	Information Security: Principles and Practice	Mark Stamp	Wile	ey Inter Science	2011			
2	Computer Security: Art and Science	Matt Bishop	Ad	dison Wesley	1/e, 2002			
3	Cryptography and Network Security	William Stallings	Pear	rson Education	7/e, 2017			

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/106105162						
2	https://nptel.ac.in/courses/106105162						
3	https://nptel.ac.in/courses/106105162						

DATA COMPRESSION

(Common to CS/CD/CM/CR/AD/AI/AM/CN/CI)

Course Code	PECST524	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce students to basic applications, concepts, and techniques of Data Compression.
- **2.** To develop skills for using recent data compression software to solve practical problems in a variety of disciplines.

Module No.	Syllabus Description					
1	Basic Compression Techniques :-Data Compression Approaches - Variable-Length Codes, Run-LengthEncoding, Space - Filling Curves, Dictionary-Based Methods, Transforms,Quantization.Huffman Encoding - Huffman Decoding, Adaptive Huffman Coding,Facsimile Compression. Run Length Encoding (RLE), RLE Textcompression, Dictionary based Coding- LZ77, LZ78, LZW and Deflate: Zipand Gzip compression.	10				
2	Advanced Techniques :- Arithmetic Coding - The Basic Idea, Implementation,Underflow; Image Compression- Introduction, Approaches to Image Compression, History of Gray Codes, Image Transforms, Orthogonal Transforms, The Discrete Cosine Transform, Intermezzo: Statistical Distributions, JPEG, Human Vision and Color, The Wavelet Transform, Filter Banks, WSQ, Fingerprint Compression	10				

	Video Compression :-	
3	Video Compression - Analog video, Digital Video, Motion Compensation.	8
	MPEG standards MPEG, H.261	
	Audio Compression :-	
4	Audio Compression - Companding, The Human Auditory System, Heinrich	o
4	Georg Barkhausen, Linear Prediction, µ-Law and A-Law Companding,	o
	Shorten	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the fundamental approaches in data compression techniques	K2
CO2	Illustrate various classical data compression techniques	K3
CO3	Illustrate various text and image compression standards	K3
CO4	Describe the video compression mechanisms to reduce the redundancy in video	К3
CO5	Understand the fundamental principles of audio data compression	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3										3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A Concise Introduction to Data Compression	David Salomon	Springer	1/e, 2008			
2	Data compression: The Complete Reference	David Salomon	Springer	3/e, 2004			
3	Introduction to Data Compression	Khalid Sayood	Morgan Kaufman	1/e, 2003			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Fractal and wavelet Image Compression techniques	Stephen Welstead,	PHI	1/e, 1999			
2	Multimedia System	Sleinreitz	Springer	1/e, 2006			
3	The Data Compression Book	Mark Nelson, Jean-loup Gailly	BPB Publications	1/e, 1996			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	An Introduction to Information Theory by Prof. Adrish Banerjee zt IIT Kanpur https://onlinecourses.nptel.ac.in/noc22_ee49/preview				

COMPUTATIONAL BIOLOGY

Course Code	PEADT526	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop exposure in Computational Tools and Techniques for Biological Data Analysis
- 2. To equip students with hands-on experience in applying computational tools and software to biological problems and to familiarize them to current research trends in computational biology.

Module No.	Syllabus Description	Contact Hours
1	Introduction to biomolecules, DNA, RNA, and Protein: The Central Dogma, Messenger RNA, tRNA, rRNA, Genetic code, Gene Structure and Control, Transcription, translation, introduction to structure of prokaryotic and eukaryote gene	9
2	Introduction to Biological Databases: NCBI, Genbank, Bio sequence formats:FASTA, Sequence alignment: Global Alignment and Local Alignment, Dot Matrix Method, Dynamic Programming Method, Gap Penalties, Amino Acid Scoring Matrices: PAM and BLOSUM, Database Similarity Searching, BLAST, Needleman and Wunsch and Smith– Waterman Method, Multiple Sequence Alignment, scoring function, Clustal,	10
3	Transcriptional Regulatory Networks, Genes and DNA Regulatory Regions, Genetic Interaction Map, Protein Interaction Networks, Experimental methodologies to obtain Protein Interaction Data, Computational methods to Predict Protein: Protein Interactions, Visualization of Protein Interaction Networks, Metabolic Networks, Interacting Partners, Mathematical Representation.	10

	Next-Generation Sequencing (NGS) Technologies, Illumina Reversible Dye- Terminator Sequencing, Ion Torrent Semiconductor Sequencing, Pacific						
	Biosciences Single Molecule Real-Time (SMRT) Sequencing, RNA-						
4	sequencing (RNA Seq), Protein-DNA Interaction Analysis (ChIP-Seq), Base						
	Calling, FASTQ File Format, and Base Quality Score, NGS Data Quality						
	Control and Preprocessing, Reads Mapping, Mapping Approaches and						
	Algorithms						

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions, each	out of which 1 question should be answered.	(0
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the structure and function of DNA, RNA proteins, Gene structure and process of transfer of information from DNA to protein	К2
CO2	Identify biological data formats and databases and employ similarity searching tools and algorithms to align sequences to highlight the similarity	К3
CO3	Demonstrate Networks in Biology, types of networks and its representation	К3
CO4	Explain Next Generation sequencing Technologies and DNA Protein interaction analysis	К3
CO5	Apply computational tools and algorithms to analyze NGS data.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books										
Sl. No	Title of the Book	Name of the Publisher	Edition and Year								
1	Introduction to Bioinformatics	Lesk, Arthur M	Oxford University Press	5/e. 2019							
2	Bioinformatics and Computational Biology A Primer for Biologists	Basant K. Tiwary	Springer Nature Singapore	1/e, 2022							
3	Bioinformatics An Introduction	Jeremy Ramsden	Springer London	1/e,2016							
4	An Introduction to Bioinformatics Algorithms	Neil C. Jones, Pavel Pevzner	MIT Press	1/e, 2004							
6	Next-Generation Sequencing Data Analysis	Wang, Xinkun	CRC Press	1/e, 2016							

	R	eference Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Bioinformatics and Computational Biology: A Primer for Biologists	Tiwary, Basant K	Springer	1/e, 2022
2	Quickstart Molecular Biology: An Introductory Course for Mathematicians, Physicists, and Computational Scientists	Benfey, Philip N.	Cold Spring Harbor Laboratory Press	1/e. 2014
3	Bioinformatics	Baxevanis, Andreas D., Gary D. Bader, and David S. Wishart	John Wiley & Sons	4/e, 2020
4	Essentials of Bioinformatics	Essentials of Bioinformatics Shaik, Noor Ahmad, et al		1/e, 2019
5	Applied bioinformatics	Selzer, Paul M., Richard J. Marhöfer, and Andreas Rohwer	Springer, Verlag	1/e, 2008
6	Bioinformatics: Methods and Applications S C Rastogi, N Mendiratta and P Rastogi		PHI Learning Private Limited	4/e, 2013
7	Fundamental Concepts of Bioinformatics	D E Krane and M L Raymer	Pearson Education	1/e. 2006
8	Bioinformatics: Sequence and Genome Analysis	Bradley E. Shapiro and Jennifer J. Dudock	Garland Science	1/e, 2007

	Video Links (NPTEL, SWAYAM)								
Module									
No.									
1	https://onlinecourses.swayam2.ac.in/cec21_bt04/preview								
2	https://onlinecourses.nptel.ac.in/noc20_bt08/preview								
3	https://onlinecourses.nptel.ac.in/noc23_bt34/preview								
4	https://onlinecourses.nptel.ac.in/noc23_bt34/preview								

COMPUTER GRAPHICS & MULTIMEDIA

(Common to CS/CD/CR/CA/AD)

Course Code	PECST527	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide strong technological concepts in computer graphics including the threedimensional environment representation in a computer, transformation of 2D/3D objects and basic mathematical techniques and algorithms used to build applications.
- **2.** To give a good understanding of the multimedia frameworks for audio/video domains and different compression algorithms.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	 Basics of Computer graphics - Basics of Computer Graphics and its applications. Video Display devices - LED, OLED, LCD, PDP and FED and reflective displays. Random and Raster scan displays and systems. Line and Circle drawing Algorithms - Line drawing algorithms-Bresenham's algorithm, Liang-Barsky Algorithm, Circle drawing algorithms - Midpoint Circle generation algorithm, Bresenham's Circle drawing algorithm. 	10
2	 Geometric transformations - 2D and 3D basic transformations - Translation, Rotation, Scaling, Reflection and Shearing, Matrix representations and homogeneous coordinates. Filled Area Primitives - Scan line polygon filling, Boundary filling and flood filling. 	8
3	Transformations and Clipping Algorithms - Window to viewport transformation. Cohen Sutherland and Midpoint subdivision line clipping	8

	algorithms, Sutherland Hodgeman and Weiler Atherton Polygon clipping						
	algorithms.						
	Three dimensional graphics - Three dimensional viewing pipeline.						
	Projections- Parallel and Perspective projections. Visible surface detection						
	algorithms- Back face detection, Depth buffer algorithm, Scan line						
	algorithm, A buffer algorithm.						
	Fundamental of Multimedia - Introduction to Multimedia, Authoring and						
	Tools, Graphics and Image Data Representations, Popular File Formats,						
	Fundamental Concepts and types of Video, Basics of Digital Audio and its						
4	types.	9					
	Compression Methods - Lossless Compression Algorithms- Run-Length	9					
	Coding, Arithmetic Coding. Lossy Compression Algorithms- Transform						
	Coding. JPEG and JPEG-LS Standard Image Compression, H.261. Video						
	Compression Technique.						

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	ce Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome						
CO1	CO1 Understand the principles of computer graphics and displays						
CO2	Illustrate line drawing, circle drawing and polygon filling algorithms	K3					
CO3	Illustrate 2D and 3D basic transformations and matrix representation	K3					
CO4	Demonstrate different clipping algorithms and 3D viewing pipeline.	K3					
C05	Summarize the multimedia features and specific compression algorithms.	K2					

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3
CO5	3	3	3									3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books						
Sl. No	Title of the Book	Title of the BookName of the Author/s					
1	Computer Graphics : Algorithms and Implementations	D. P. Mukherjee, Debasish Jana	PHI	1/e, 2010			
2	Computer Graphics with OpenGL	Donald Hearn, M. Pauline Baker and Warren Carithers	PHI	4/e, 2013			
3	Fundamentals of Multimedia	Ze-Nian Li and Mark S. Drew	Pearson	2003			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year 1/e, 2020				
1	Introduction to Flat Panel Displays	Jiun-Haw Lee, I-Chun Cheng, Hong Hua, Shin- Tson Wu	Wiley					
2	Computer Graphics and Multimedia	ITL ESL	Pearson	1/e, 2013				
3	Computer Graphics	Zhigang Xiang and Roy Plastock	McGraw Hill	2/e, 2000				
4	Principles of Interactive Computer Graphics	William M. Newman and Robert F. Sproull	McGraw Hill	1/e, 2001				
5	Procedural Elements for Computer Graphics	David F. Rogers	McGraw Hill	1/e, 2017				
6	Computer Graphics	Donald D Hearn, M Pauline Baker	Pearson	2/e, 2002				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1, 2, 3	Computer Graphics By Prof. Samit Bhattacharya at IIT Guwahati https://onlinecourses.nptel.ac.in/noc20_cs90/preview						
4	Web Based Technologies and Multimedia Applications by Prof. P. V. Suresh at Indira Gandhi National Open University https://onlinecourses.swayam2.ac.in/nou20_cs05/preview						

ADVANCED COMPUTER ARCHITECTURE

Course Code	PECST528	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCST404	Course Type	Theory

Course Objectives:

- **1.** To introduce the advanced processor architectures including parallelism concepts in Programming of multiprocessor and multicomputers.
- 2. To provide detailed understanding about data flow in computer architectures.

SYLLABUS

Module No.	Syllabus Description					
1	Introduction – The impact of hardware and software technology trends Self review – Instruction set Architecture, Memory addressing, addressing modes Class of Computers, Concept of Computer Hardware and Organization (P15, 5th Edition) Measuring, Reporting and Summarizing Performance, Benchmarks – Desktop and Server Amdahl's Law, Processor Performance Equation <u>Beyond the books</u> – Visit www.spec.org. Explore the High Performance Computing benchmarks and compare the results submitted by different vendors for the same benchmark. Are you able to appreciate the need for benchmarks to compare performance? What are retired benchmarks? Can you write a paper and publish results based on a retired benchmark?					
2	Review the basic Concepts of Parallel Processing and Pipelining Instruction Level Parallelism, data dependencies and hazards Different types of dependences, Compiler Techniques for ILP, Branch Prediction – Correlating					

	branch predictor Dynamic Scheduling - Idea, Introduction to Tomasulo's		
	scheme. Register Renaming Hardware Speculation, Reorder Buffers		
	Multiple issue and static scheduling, VLIW		
	Data Level Parallelism. Vector Processors - How do they work, Memory		
	Banks, Stride, Scatter Gather. SIMD-comparison with vector GPU,		
	Comparison of loops in C vs CUDA NVIDIA GPU Memory structure		
	Vector Processor vs GPU, Multimedia SIMD computers vs GPU		
3	Multiprocessor Architecture, Centralized shared memory architecture Cache		
	coherence and snooping protocol (Implementation details - not required).		
	Performance of Symmetric Shared-Memory Processors. Distributed Shared		
	Memory and Directory based protocol - basics. Synchronization - Basic		
	Hardware Primtives. Memory Consistency Models – Sequential and relaxed		
	Warehouse Scale Computers - Goals and requirements. Programming		
	frameworks for Batch processing - Map reduce and Hadoop Computer		
	Architecture of Warehouse-scale computers Moore's Law, Dennard Scaling,		
	Dark Silicon and the transition towards Heterogeneous Architectures		
	Asymmetric multi-core architecture - Static and Dynamic (Overall idea,		
4	example processors) Functional Heterogeneous Multicore architecture -		
	GPUs, Accelerators, Reconfigurable Computing Beyond the textbook -		
	Identify the processor used in your PC and mobile phone. Study about its		
	architecture, is it homogeneous or heterogeneous, does it use GPUs, what		
	information can you gather about it from the manufacturer's website -		
	Discuss in the class		

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome			
C01	Enumerate the different classes of computers and where they are used in everyday life.	K2		
CO2	Compute the effect of hardware/software enhancements on the speedup of a processor using Amdahl's law.	К3		
СО3	Interpret possible dependencies that can cause hazards in a given block of code.	К3		
CO4	Summarize different strategies followed to ensure Instruction Level Parallelism.	K2		
CO5	Compare different strategies followed to ensure Instruction Level Parallelism and different strategies followed to ensure Data Parallelism.	К3		
CO6	Illustrate the need for memory consistency models and cache coherence protocols and explain the principle behind it.	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3	3								3
CO6	3	3	3	3								3

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer architecture: A Quantitative Approach.	Hennessy, J. and Patterson, D	Morgan Kaufman	5/e, 2012				
2	The Dark Side of Silicon: Energy Efficient Computing in the Dark Silicon Era	Kanduri, Anil, et al.	Springer	1/e, 2017				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Computer Architecture	Gérard Blanchet Bertrand Dupouy	Wiley	1/e, 2013				
2	Advanced Computer Architectures	Sajjan C Shiva	Taylor & Fancis	1/e, 2018				
3	Computer Architecture	Charles Fox	no starch press	1/e, 2024				

	Video Links (NPTEL, SWAYAM)				
No.	No. Link ID				
1	https://archive.nptel.ac.in/courses/106/103/106103206/				

DATA MINING

(Common to CS/CD/CM/CA/AM)

Course Code	PECST525	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a thorough understanding of the key processes and concepts involved in data mining and data warehousing within application domains
- 2. To enable students to understand the different data preprocessing techniques, fundamentals and advanced concepts of classification, clustering, association rule mining, text mining and web mining, and apply these techniques in real-world scenarios

SYL	LAB	US

Module No.	Syllabus Description				
1	Data Mining Fundamentals :- Data Mining - concepts and applications, Knowledge Discovery in Database Vs Data mining, Architecture of typical data mining system, Data Mining Functionalities Data warehouse - Differences between Operational Database Systems and Data Warehouses, Multidimensional data model- Warehouse schema, OLAP Operations, Data Warehouse Architecture	8			
2	Data Preprocessing :-Data Preprocessing - Need of data preprocessing, Data Cleaning- Missing values, Noisy data, Data Integration and TransformationData Reduction - Data cube aggregation, Attribute subset selection,	9			

	Dimensionality reduction, Numerosity reduction, Discretization and concept hierarchy generation.	
3	Classification And Clustering :- Classification - Introduction, Decision tree construction principle, Information Gain, Gini index, Decision tree construction algorithm - ID3, Neural networks, back propagation, Evaluation measures - accuracy, precision, recall, F1 score Clustering - Introduction to clustering, distance measures, Clustering Paradigms, Partitioning Algorithm - k means, Hierarchical Clustering, DBSCAN	9
4	Association Rule Analysis And Advanced Data Mining : -Association Rule Mining - Concepts, Apriori algorithm, FP Growth AlgorithmWeb Mining - Web Content Mining, Web Structure Mining- Page Rank, WebUsage Mining- Preprocessing, Data structures, Pattern Discovery, PatternAnalysisText Mining - Text Data Analysis and information Retrieval, Basic measuresfor Text retrieval, Text Retrieval methods, Text Indexing Technique	10

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Students must be asked to identify problems involving large datasets and identify the right solution from the concepts already learned. A comparison of the results with a similar approach also need to be performed to assess the Knowledge Level 5.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 3 subdivisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the key process of data mining and data warehousing concepts in application domains.	K2
CO2	Apply appropriate pre-processing techniques to convert raw data into suitable format for practical data mining tasks	К3
СО3	Illustrate the use of classification and clustering algorithms in various application domains	К3
CO4	Comprehend the use of association rule mining techniques	K3
CO5	Explain advanced data mining concepts and their applications in emerging domains	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										2
CO2	3	3	3	3	2							2
CO3	3	3	3	3	2							2
CO4	3	3	3	3	2							2
CO5	2	2										2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Data Mining Concepts and Techniques	Jaiwei Han, Micheline Kamber	Elsevier	3/e, 2006			
2	Data Mining: Introductory and Advanced Topics	Dunham M H	Pearson Education	1/e, 2006			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Introduction to Data Mining	Pang-Ning Tan, Michael Steinbach	Addison Wesley	1/e, 2014		
2	Data Mining: Concepts, Models, Methods, and Algorithms	Mehmed Kantardzic	Wiley	2/e, 2019		

Video Links (NPTEL, SWAYAM)					
Module No. Link ID					
1	https://youtu.be/ykZUGcYWg?si=qiqynQyjI1sNNiHE				
2	https://youtu.be/NSxEiohAH5o?si=ZIJHMiRvpFcNQNMA				
3	https://youtu.be/VsYKqOokgaE?si=rgndBZqpzB29LUGg				
4	https://youtu.be/N_whCVtfL9M?si=VPMH9NP4vdAaiuPe				

ADVANCED	GRAPH	ALGORITHMS
-----------------	-------	------------

Course Code	PECST595	CIE Marks	40
Teaching Hours/Week	3:0:0:0	ESE Marks	60
(L: T:P: R)			
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GAMAT401	Course Type	Theory
	PCCST303		
	PCCST502		

Course Objectives:

- 1. To gain proficiency in designing and implementing sophisticated graph algorithms for analyzing large-scale networks, and apply these techniques to real-world problems such as social network analysis and transportation optimization.
- 2. To develop the ability to critically evaluate and enhance advanced graph algorithms for dynamic and evolving graphs, using real-world case studies to illustrate their application and performance in complex scenarios.

Module	Syllabus Description			
No.	Synabus Description			
1	 Maximum Flow Algorithms - Dinic's Algorithm, Push-Relabel Algorithm. Applications - network bandwidth allocation, data center resource management. Minimum Cost Flow - Cycle-Canceling Algorithm, Capacity Scaling Algorithm. Applications - transportation logistics, network routing with cost constraints. Assignments: Network Bandwidth Allocation - Optimize bandwidth allocation in a communication network using Dinic's Algorithm. Implement Dinic's Algorithm to solve a network flow problem where you are given a communication network represented as a directed graph with capacities on edges. Your goal is to maximize 	9		

SYLLABUS

	the flow from a source node to a sink node. Use a real-world			
	network dataset (e.g., a telecommunications network with nodes and			
	 link capacities). Logistics Optimization - Optimize the transportation of goods in a 			
	supply chain network using the Capacity Scaling Algorithm.			
	Use the Capacity Scaling Algorithm to address a logistics problem			
	where you need to minimize transportation costs in a supply chain			
	network. The network is represented as a graph where nodes			
	represent locations (warehouses, distribution centers, etc.), and edges			
	represent transportation routes with associated costs. Use a dataset			
	represent transportation routes with associated costs. Ose a dataset			
	Strongly Connected Components (SCC) - Tarjan's Algorithm, Kosaraju's			
	Algorithm. Applications - analyzing web page link structures, understanding			
	connected components in social networks.			
	Dynamic Graph Connectivity - Dynamic connectivity algorithms, Eulerian			
	and Hamiltonian paths. Applications - real-time network monitoring,			
	dynamic route planning.			
	Assignments: 1. Web Page Link Analysis - Objective: Analyze strongly connected			
	components (SCC) in a web graph using Tarjan's Algorithm.			
	Implement Tarjan's Algorithm to find SCCs in a web graph where			
2	nodes represent web pages and edges represent hyperlinks. SCCs	9		
	help in understanding the structure of the web and identifying			
	clusters of interconnected pages. Use a real-world web graph dataset with nodes and edges.			
	2. Dynamic Route Planning - Manage and analyze routes in a transportation network that evolves over time using dynamic			
	connectivity algorithms. Implement dynamic connectivity algorithms to handle a			
	transportation network where edges and nodes may be added or			
	removed over time. The goal is to maintain and update the			
	connectivity information efficiently. Use a dataset representing a			
	transportation network with dynamic updates.			
	Graph Matching - Edmonds' Algorithm for finding maximum matchings.			
3	Applications - job assignment, network design.	9		
	Graph Coloring - Colorings for special classes of graphs (e.g., planar graphs,			
	interval graphs). Applications - frequency assignment in wireless networks,			

	scheduling problems	
	Assignments:	
	1. Job Assignment Optimization - Solve job assignment problems using	
	Edmonds' Algorithm.	
	Implement Edmonds' Blossom Algorithm to address job assignment	
	problems where you need to match workers to jobs in a way that	
	maximizes the overall efficiency or minimizes the cost. Use a dataset	
	with job assignments and associated costs or efficiencies.	
	2. Frequency Assignment - Allocate frequencies in wireless	
	communication systems using graph coloring techniques.	
	Apply graph coloring techniques to allocate frequencies to	
	transmitters in a wireless communication network to avoid	
	interference. The goal is to minimize the number of frequencies used	
	while ensuring that adjacent transmitters do not use the same	
	frequency. Use a dataset representing a network of transmitters with	
	potential interference.	
	Graph Partitioning and Community Detection - Kernighan-Lin Algorithm,	
	Spectral Partitioning. Applications - social network community detection,	
	large-scale data clustering.	
	Parameterized Algorithms for Graph Problems - Fixed-parameter tractability	
	for vertex cover, feedback vertex set. Applications - network security,	
	bioinformatics.	
	Assignments:	
	1. Social Network Community Detection - Detect communities in a	
	social network using the Kernighan-Lin Algorithm.	
	Apply the Kernighan-Lin Algorithm to detect communities in a	
4	social network where nodes represent individuals and edges	9
	represent relationships. The goal is to find clusters of highly	
	interconnected individuals. Use a social network dataset with nodes	
	and edges representing social connections.	
	2. Network Security Analysis - Identify critical nodes in a network	
	using parameterized algorithms to assess network security.	
	Use parameterized algorithms to identify critical nodes and	
	vulnerabilities in a network. These nodes are crucial for the	
	network's connectivity, and their removal would impact the	
	network's security and robustness. Use a dataset representing a	
	network with nodes and edges, along with possible vulnerabilities.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Assignment evaluation pattern:

- Correctness and Accuracy (30%) Correct Solution and Implementation.
- Effectiveness and Efficiency (25%) Algorithm Efficiency and Performance Metrics.
- Analytical Depth (25%) Problem Understanding and Solution Analysis.
- Justification and Comparisons (20%) Choice Justification and Comparative Analysis.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each	
• Total of 8 Questions,	question can have a maximum of 3 subdivisions.	60
each carrying 3 marks	Each question carries 9 marks.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop and implement advanced algorithms for network flow, graph connectivity, and matching, and evaluate their performance on real-world datasets.	K3
CO2	Analyze and compare the efficiency and effectiveness of various graph algorithms, including those for network optimization and community detection.	K4
CO3	Apply advanced graph algorithms to solve practical problems such as network optimization, job assignment, and frequency allocation, demonstrating their utility in real-world scenarios.	К3
CO4	Formulate and solve complex graph-related problems using appropriate algorithms, including those for graph traversal, minimum spanning trees, and network security analysis.	К5
CO5	Critically assess the strengths and limitations of different graph algorithms, and effectively communicate findings and recommendations through detailed reports and presentations.	К5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
CO5	3	3	3	3	3							2

Note: 1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

Text Books						
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year		
1	Introduction to Algorithms	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein	The MIT Press Cambridge	4/e 2023		
2	Algorithms	Robert Sedgewick and Kevin Wayne	Addison-Wesley	4/e, 2023		
3	Graph Algorithms	Shimon Even	Cambridge University Press	2/e, 2011		
4	Graph Theory	Reinhard Diestel	Springer	4/e, 2010		

	Reference Books						
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year			
1	A Guide to Graph Algorithms	Mingyu Xiao and Ton Kloks	Springer Verlag, Singapore;	1 st , 2022			
2	Network Science	Albert-László Barabási and Márton Pósfai	Cambridge University Press	1 st , 2016			
3	Modern Graph Theory	Bela Bollobas	Springer-Verlag New York Inc	1 st , 1998			
4	Network Flows: Theory, Algorithms, and Applications	Ravindra Ahuja, Thomas Magnanti, and James Orlin	Pearson	1 st , 1993			
5	Introduction to Graph Theory	Douglas B. West	Pearson	2 nd , 2020			
6	Modern Graph Theory Algorithms with Python: Harness the power of graph algorithms and real-world network applications using Python	Colleen M Farrelly and Franck Kalala Mutombo	Packt Publishing	2024			

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc21_cs48/preview						
2	https://onlinecourses.nptel.ac.in/noc21_cs48/preview						
3	https://onlinecourses.nptel.ac.in/noc21_cs48/preview						
4	https://onlinecourses.nptel.ac.in/noc21_cs48/preview						

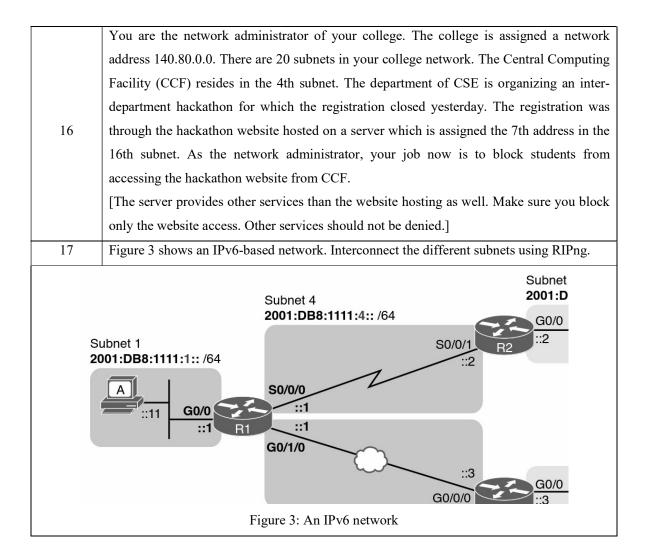
NETWORKS LAB

(Common to CS/CD/CM/CB/CU/CI)

Course Code	PCCSL507	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Lab

Course Objectives:

- **1.** To provide hands-on experience in network programming using Linux System calls and network monitoring tools.
- 2. To comprehend the implementation of network protocols and algorithms, and configuration of network layer services using network simulators.


Expt.	Even outra ante						
No.	Experiments						
	Warm up						
1	Familiarize Linux networking commands - ifconfig, ifplugstatus, iftop, ping, ip,						
1	traceroute, mtr, netstat, whois, nmap, nmcli, speedtest-cli, bmon, nslookup, tcpdump						
	Wireshark based						
	Start your web browser and clear the browser's cache memory. Open Wireshark and start						
	capturing. Then visit any webpage of your choice. Type http in the filter field of the						
	Wireshark and click Apply so that only HTTP messages are displayed. After enough						
	packets have been captured, select the Capture from the pull-down menu and select Stop						
	to stop capturing.						
	Using the captured information, determine the following:						
2	(a) the source IP address and destination IP address of the first GET message						
	(b) the medium format, the language, the encoding, and the character set that the						
	client can accept. (Use the first GET message)						
	(c) the URL of the website and the user agent (Use the first GET message)						
	(d) the source IP address and destination IP address of the first response message						
	(e) the status codes for the first response message.						
	(f) when the HTML file that you are retrieving was last modified at the server						

	(g) value of the content-length field of the first response message
	(h) how long it took from the time the GET message was sent until the response
	message was received.
	(Use the timestamps of a GET message and that of the corresponding response
	message. By default, the time column's value is the amount of time in seconds
	since Wireshark tracing began.)
	(i) the HTTP version of your browser.
	Compose an e-mail and address it to yourself, but do not send it yet. Open the Wireshark
	and start capturing. Go to your e-mail user agent and send the e-mail. In the Wireshark
	window, type smtp in the filter field and click Apply. Stop capturing and save the
	captured file.
	Using the captured information, answer the following:
	(a) All SMTP packets have the same two IP addresses. Which one is the IP address of
	your computer? Which host does the other IP address represent?
3	(b) All SMTP packets have the same two port numbers. Which one is the port number
	of the SMTP client process? In which range is the client port number?
	(c) What is the port number of the SMTP server process?
	(d) Examine the SMTP commands or SMTP response codes in each SMTP packet
	and write down their meanings.
	(e) There is an IMF packet that is encapsulated inside an SMTP packet. What is the
	content of this packet?
	First, clear the DNS record from the cache memory of your computer. For this, use
	ipconfig/flushdns on Windows or systemd-resolveflush-caches on Linux. Next, clear
	your browser's cache memory. Open the Wireshark and start capturing. In your browser
	visit your college website. Wireshark starts to capture packets. Type dns in the filter field
	and press Apply so that only DNS messages are displayed. Stop capturing and save the
	captured file.
	Using the captured information, answer the following questions:
	(a) Locate the first DNS query message resolving your college website. What is the
4	packet number (This "packet number" is assigned by Wireshark for listing
	purposes only; it is NOT a packet number contained in any real packet header.) in
	the trace for the DNS query message?
	(b) Is this query message sent over UDP or TCP?
	(c) Now locate the corresponding DNS response to the initial DNS query. What is the
	packet number in the trace for the DNS response message? Is this response
	message received via UDP or TCP?
	message received via obt of ter.
	(d) What are the source and destination port numbers for the DNS query message?

	(e) What are the source and destination port numbers for the DNS response message?			
	(f) To what IP address is the DNS query message sent?			
	(g) What is the query message ID number? What is the response message ID number?			
	What is the purpose of this field?			
	(h) What is the length of the flag field in a DNS message?			
	(i) Which bit in the flag field determines whether the message is a query or a			
	response?			
	(j) Which bits are used only in the response message? What is the function of these			
	bits in the response message?			
	(k) How many question records, answer records, authority records, and additional			
	records are present in the query message?			
	(1) How many question records, answer records, authority records, and additional			
	records are present in the response message?			
	Socket programming based			
	Client-Server communication using TCP:- The client inputs an integer N and creates a			
	square matrix of order N by populating the matrix with random numbers in the range			
5	[1,50]. It then sends the matrix to the server which identifies the matrix type (upper			
	triangular, lower triangular, diagonal). The server then informs the type (as a string) to the			
	client which it prints.			
	Client-Server communication using UDP:- You are very good at communicating in the			
	"new generation" English language with all sorts of abbreviations like tbh, ig, etc. Now			
	design a client-server application as follows: The client inputs a new-generation English			
	sentence from the user and sends it to the server. The server then translates the received			
	sentence to formal English and sends the translated sentence back to the client which it			
	prints.			
6	Sample string sent to the server			
6	Really idc about this stupid server as it is of no use irl but atm, I will design one, tbf to the			
	professor.			
	Translated string sent back to the client			
	Really I don't care about this stupid server as it is of no use in real life but at the moment, I			
	will design one, to be fair to the professor.			
	You may consider only the following abbreviations: tbh, ig, tbf, atm, irl, lol, asap, omg,			
	ttyl, idk, nvm			
7	Implement a multi-user chat server using TCP as the transport layer protocol.			
	Implement a concurrent Time Server application using UDP to execute the program at a			
8	remote server. The client sends a time request to the server which sends its system time			

	back. The client then displays the received time value.					
	Develop a concurrent file server that will provide the file requested by the client if it					
9	exists. If not, the server sends an appropriate message to the client. The server should also					
, ,	send its process ID (PID) to clients for displaying along with the file contents or with the					
	message.					
10	Develop a packet-capturing application using raw sockets.					
	Cisco's Packet tracer based					
	Familiarizing router commands					
	(a) Knowing the current mode (user or privileged), switching to privileged mode					
	(b) Switching to configuration mode					
	(c) Obtaining router information such as type, OS, memory stats, interface details etc.					
	(d) Viewing the status of any routing protocols currently configured					
	(e) Showing the routing table					
11	(f) Saving the running configuration					
	(g) Viewing the command history					
	(h) Viewing the router clock					
	(i) Viewing the list of hosts					
	(j) Displaying the statistics for all the interfaces (Both detailed and brief views)					
	(k) Knowing the controller type (DTE or DCE)					
	(1) Configuring serial and ethernet interfaces - enabling the interface, setting IP					
	address, mask, and clock rate					
	172.16.30.0					
	EO					
	F0/0 E0 S0 S0 S1 S1 S0					
	2501A 2501B 25					

router	Interface	I				
2621	F0/0	1				
2501A	E0	1				
2501A	SO	1				
2501B	EO	1				
2501B	S0	1				
2501B	S1	1				
05040		1°a				
e 1: A sample network along	g with the interface addresses (all	interfaces use a /24 mask)				
Set up static routing for th	e network shown in Figure 1. On	ice the routes are set up, display				
the routing table and verif	y the connectivity using ping .					
Implement RIPv2 routing	for the network shown in Figure	e 1. Once the routes are set up,				
display the routing table and verify the connectivity using ping .						
Implement OSPF routing for the network shown in Figure 1. Once the routes are set up,						
display the routing table and verify the connectivity using ping .						
You are the network administrator of your college. A small portion of your campus						
network is shown in Figure 2. You want to allow only Host_B to communicate with the						
network 172.16.10.0. Verify your settings by the following checks:						
(a) Pinging Host_A f	rom Host_B					
(b) Pinging Host A f	rom Lab B and Lab C					
Host_A	Host_B	H				
F0/27	E0/2 E0/3	F0/2				
172.16.10.0/24	172.16.30.0	/24				
F0/0	F0/0					
Figure 2: A p	ortion of your college campus ne	twork				
	2621 2501A 2501A 2501B 2501D 2501B 2501D 2	2621F0/0 $2501A$ E0 $2501A$ S0 $2501B$ E0 $2501B$ S0 $2501B$ S1 25021 S1 295021 $50/2$ 295021 $50/4$ 295021 $50/4$ 295021 $50/4$ 295021 $50/4$ 295021 $50/4$ 295021 $50/4$ 295021 $50/4$ 295021 $50/4$ 295021 $50/4$ 295021 $50/4$ 295021 $50/4$ <				

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with valid			
Preparatory	Execution of work/	inference/	Viva	Dered	Tetel
work/Design/	troubleshooting/	Quality of	voce	Record	Total
Algorithm	Programming	Output			
10	15	10	10	5	50

• Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.

• Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the working of application layer protocols by analyzing the pertinent headers in actual data packets captured using network monitoring tools.	К3
CO2	Exploit the client server paradigm to develop real time networking applications using transport layer protocols.	К3
CO3	Employ IPv4 and IPv6 addressing, subnetting to efficiently design networks.	K3
CO4	Simulate core networking concepts using a network simulator.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3							3
CO2	3	3	3	3		2						3
CO3	3	3	3	3								3
CO4	3	3	3	3	3							3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

		Text Books		
Sl. No	Title of the Book	Name of the Publisher	Edition and Year	
1	Unix Network Programming, Volume 1: The Sockets Networking API	W. Richard Stevens, Andrew M. Rudoff, Bill Fenner	Pearson Education	3/e, 2004
2	CCNA Cisco certified network associate study guide Exam 640-802 6	Todd Lammle	Wiley	6/e, 2007
3	Beej's Guide to Network Programming: using Internet Sockets	Brian "beej Jorgensen" Hall	Amazon Digital Services	2019

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Networks: A Top- Down Approach	Behrouz A Forouzan	McGraw Hill	SIE, 2017		
2	Computer Networking: A Top- Down Approach Featuring Internet	J. F. Kurose and K. W. Ross	Pearson Education	8/e, 2022		

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://nptel.ac.in/courses/106106091					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

• Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.

• Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

•Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

- 1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)
 - Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
 - Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
 - Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
 - Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

•Completeness, clarity, and accuracy of the lab record submitted

DATA ANALYTICS LAB

Course Code	PCCDL508	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST503	Course Type	Lab

Course Objectives:

- To impart the knowledge on the Big Data Technologies for processing the Different types of Data.Configure Hadoop and perform File Management Tasks
- 2. To enable the learner to analyze big data using machine learning techniques

Expt. No.	Experiments
1	Set up and install Hadoop and explore the various shell commands in Hadoop and implement file management tasks.
2	Implement a word count program using Map Reduce to find the number of occurrences of specific keywords from an input file.
3	Using the structure of the Word Count program, write a Hadoop program that calculates the average word length of all words that start with each character.
4	Write a Map Reduce program for removing stop words from the given text files
5	Implement matrix multiplication with Hadoop Map Reduce
6	Implement Pig Latin scripts to sort, group, join, project, and filter data.
7	Implementing Database Operations on Hive
8	Write an R program to find the factorial and check for palindromes.
9	Implement a program to find variance, covariance and correlation between different types of attributes

10	Write an R program to solve linear regression and make predictions.
11	Write an R program to solve logistic regression.
12	Implement SVM and Decision tree Classifier using R
13	Implement KNN and Naive Bayes Classifier using R
14	Implement a Spark program that does the following:i) Count the total number of observations included in the dataset ii). Count the number ofyears over which observations have been made iii) Display the oldest and the newest yearof observation
15	Implement clustering techniques using SPARK.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with			
Preparatory	Execution of work/	valid inference/	Viva	Decord	Tatal
work/Design/	work/Design/ troubleshooting/		voce	Record	Total
Algorithm	Programming	Output			
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

At the end of the course students should be able to:

	Course Outcome			
CO1	Configure Hadoop and perform File Management Tasks	К3		
CO2	Implement different tasks using Hadoop Map Reduce programming model	К3		
CO3	CO3 Apply different data processing tools like Pig and Hive to real time issues like weather dataset and sales of a company			
CO4	Implement data extraction from files and analyze big data using machine learning techniques in R.	К3		
CO5	Illustrate the knowledge of Spark to analyze data in real-life scenarios.	К3		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3				3			2		1		3
CO2	3	3	2	1	3			2		1		3
CO3	3	3	2	1	3			2		1		3
CO4	3	3	2	1	3			2		1		3
CO5	3	3	2	1	3			2		1		3

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), -: No Correlation

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Mastering Apache Spark	Mike Frampton	Packt Publishing	1/e,2015				
2	Hadoop: The Definitive Guide	Tom White	O'reilly Media	4/e, 2015				
3	Machine Learning with Spark	Nick Pentreath	Pract Publishing	1/e, 2015				
4	Big Data Analytics with Spark: A Practitioner's Guide to Using Spark for Large Scale Data Analysis	Mohammed Gulle	Apress	1/e.2015				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Big Data Fundamentals: Concepts, Drivers & Techniques	Thomas Erl, Wajid Khattak, and Paul Buhler	Pearson	1/e,2016				
2	Programming Pig Dataflow Scripting with Hadoop	Alan Gates	O'Reilly	1/e. 2011				
3	Programming Hive	Jason Rutherglen, Dean Wampler, Edward Caprialo	O'Reilly	1/e, 2012				
4	BIG DATA	Black Book TM	DreamTech	1/e,2016				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	Big Data Computing: https://nptel.ac.in/courses/106104189						
2	Data Science on Apache Spark. Databricks. https://databricks.com/blog/2015/06/01/databricks- launches-moocdata-science-on-spark						
3	Advanced R Programming for Data Analytics in Business: https://nptel.ac.in/courses/110104513						

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

• Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.
- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 6

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

COMPILER DESIGN

(Common to CS/CD/CU/CC/CN/CB)

Course Code	PCCST601	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:1:0:0	ESE Marks	60
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PCCST302	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of the compiler construction process through its various phases viz. lexical analysis, parsing, semantic analysis, code generation, and optimization.
- **2.** To introduce compiler construction tools like Lex and YACC and use them in lexical analysis and parsing.

Module	Syllabus Description	Contact			
No.		Hours			
	Introduction - Compiler Structure, Overview of Translation: The Front				
	End; The Optimizer; The Back End.				
	Scanners - Recognizing Words, Regular Expressions, From Regular				
1	Expression to Scanner: FSA (Brush-up only), Implementing Scanners	6			
	Hands-on: Recognizing Words with Lex, Regular Expressions in Lex				
	Parsing - Introduction, Expressing Syntax				
	Top-Down Parsing - Transforming A Grammar: Eliminating Left				
	Recursion; Backtrack-free Parsing; Left-Factoring To Eliminate				
2	Backtracking, Recursive Descent Parsers, Table-Driven LL(1) Parsers	10			

	Bottom-Up Parsing - Shift Reduce Parser, The LR(1) Parsing	
	Algorithm, Building LR(1) Tables, Errors in the Table Construction,	
	Reducing the Size of LR (1) Tables.	
		16
	Hands-on: Building a calculator with YACC	
	Intermediate Representations: An IR Taxonomy, Graphical IRs -	
3	Syntax-Related Trees, Graphs; Linear IRs - Stack-Machine Code -	
	Three-Address Code - Representing Linear Codes	
	Syntax-Driven Translation: Introduction, Translating Expressions,	
	Translating Control-Flow Statements	
	Code generation: Code Shape - Arithmetic Operators, Boolean and	
	Relational Operators, Control-Flow Constructs (Conditional	
	Execution, Loops and Iteration, Case Statements only), Procedure	
4	Calls	14
	Code Optimization - Introduction, Opportunities for Optimization,	
	Scope Of Optimization	
	Local Optimization: Local Value Numbering, Tree-Height Balancing	
	Regional Optimization: Superlocal Value Numbering, Loop Unrolling	
	Global Optimization: Finding Uninitialized Variables with Live Sets,	
	Global Code Placement	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
C01	Use lexical analysis techniques to build a scanner for a given language specification. (Cognitive Knowledge Level: Apply)	К3			
CO2	Construct parse trees for input programs using parsing algorithms and detect syntactic errors. (Cognitive Knowledge Level: Apply)	K3			
СО3	Develop semantic analysis techniques to check program correctness. (Cognitive Knowledge Level: Apply)	К3			
CO4	Build intermediate code representations by applying intermediate code generation techniques. (Cognitive Knowledge Level: Apply)	К3			
CO5	Optimize generated code using code optimization strategies to improve performance. (Cognitive Knowledge Level: Apply)	К3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CODOM	TILAL		4 D	\mathbf{O}
CO-PO Mapping	I able (Mappi	ing of Course U	utcomes to Program	(Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							2
CO2	3	3	3		3							2
CO3	3	3	3		3							2
CO4	3	3	3		3							2
CO5	3	3	3		3							2

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Engineering a Compiler	Keith D. Cooper, Linda Torczon	Elsevier Science	3/e, 2023				
2	Lex and YACC	John R. Levine, Tony Mason, Doug Brown	O' Reily	2/e, 1992				

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Compilers – Principles Techniques and Tools	Aho A.V., Ravi Sethi and D. Ullman.	Addison Wesley,	2/e, 2010.		
2	Compiler Construction - Principles and Practice	Kenneth C Louden	Thomson Learning	1/e, 2007		
3	Compiler Design in C	Allen Holub	Prentice-Hall software series	1/e, 1990		
4	ModernCompilerImplementation in C	Andrew W. Appel	Cambridge University Press	2/e, 2004		

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1-4	https://archive.nptel.ac.in/courses/106/105/106105190/					

MACHINE LEARNING

Course Code	PCCDT602	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Mins
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To impart the fundamentals principles of machine learning in computer and science.
- **2.** To provide an understanding of the concepts and algorithms of supervised and unsupervised learning.

Module No.	Syllabus Description			
1	Introduction to ML:-Machine Learning vs. Traditional Programming, Machine learning paradigms - supervised, semi-supervised, unsupervised, reinforcement learning.Parameter Estimation - Maximum likelihood estimation (MLE) and maximum aposteriori estimation (MAP), Bayesian formulation.Supervised Learning:-Feature Representation and Problem Formulation, Role of loss functions and 	9		
2	Classification - Logistic regression, Naïve Bayes, KNN, Decision Trees – ID3 Generalisation and Overfitting - Idea of overfitting, LASSO and RIDGE regularization, Idea of Training, Testing, Validation	9		

	 Evaluation measures – Classification - Precision, Recall, Accuracy, F-Measure, Receiver Operating Characteristic Curve(ROC), Area Under Curve (AUC). Regression - Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R Squared/Coefficient of Determination. 	
3	 SVM – Linear SVM, Idea of Hyperplane, Maximum Margin Hyperplane, Non-linear SVM, Kernels for learning non-linear functions Neural Networks (NN) - Perceptron, Neural Network - Multilayer feed- forward network, Activation functions (Sigmoid, ReLU, Tanh), Back propagation algorithm. 	9
4	Unsupervised LearningClustering - Similarity measures, Hierarchical Clustering - AgglomerativeClustering, partitional clustering, K-means clusteringDimensionality reduction - Principal Component Analysis, MultidimensionalscalingEnsemble methods - bagging, boosting; Resampling methods - Bootstrapping, Cross Validation. Practical aspects - Bias-Variance tradeoff.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. 	60
carrying 3 marks (8x3 =24 marks)	 Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate Machine Learning concepts and basic parameter estimation methods.	К2
CO2	Demonstrate supervised learning concepts (regression, classification).	К3
CO3	Illustrate the concepts of Multilayer neural network and Decision trees	K3
CO4	Describe unsupervised learning concepts and dimensionality reduction techniques	К3
CO5	Use appropriate performance measures to evaluate machine learning models	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Machine Learning	Ethem Alpaydin	MIT Press	4/e, 2020			
2	Data Mining and Analysis: Fundamental Concepts and Algorithms	Mohammed J. Zaki Wagner Meira	Cambridge University Press	1/e, 2016			
3	Neural Networks for Pattern Recognition	Christopher Bishop	Oxford University Press	1/e, 1998			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Applied Machine Learning	M Gopal	McGraw Hill	2/e, 2018			
2	Machine Learning using Python	Manaranjan Pradhan U Dinesh Kumar	Wiley	1/e, 2019			
3	Machine Learning: Theory and Practice	M.N. Murty, V.S. Ananthanarayana	Universities Press	1/e, 2024			

	Video Links (NPTEL, SWAYAM)			
No.	Link ID			
1	https://archive.nptel.ac.in/courses/106/105/106105152/			
2	https://archive.nptel.ac.in/courses/106/106/106106139/			
3	https://nptel.ac.in/courses/106106202			

SOFTWARE TESTING

(Common to CS/CA/CM/CD/CR/AM/AD)

Course Code	PECST631	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Cultivate proficiency in software testing methodologies and techniques.
- 2. To Foster expertise in software testing tools and technologies.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Software Testing & Automation:- Introduction to Software Testing - Concepts, importance of testing, software quality, and real-world failures (e.g., Ariane 5, Therac 25); Software Testing Processes - Levels of thinking in testing; Testing Terminologies - Verification, validation, fault, error, bug, test cases, and coverage criteria; Types of Testing - Unit, Integration, System, Acceptance, Performance (stress, usability, regression), and Security Testing; Industry Trends - AI in test case automation, Introduction to GenAI in testing; Testing Methods - Black-Box, White-Box, and Grey- Box Testing; Automation in Testing - Introduction to automation tools (e.g., Selenium, Cypress, JUnit); Case Study- Automation of Unit Testing and Mutation Testing using JUnit.	8
2	Unit Testing, Mutation Testing & AI-Driven Automation:- Unit Testing- Static and Dynamic Unit Testing, control flow testing, data flow testing, domain testing; Mutation Testing- Mutation operators, mutants, mutation score, and modern mutation testing tools (e.g., Muclipse); JUnit Framework - Automation of unit testing, frameworks for testing in real-world projects; AI in Testing - GenAI for test case	8

	generation and optimization, impact on automation; Industry Tools -	
	Application of AI-driven testing tools in automation and predictive	
	testing; Case Study - Mutation testing using JUnit, AI-enhanced test case	
	automation.	
	Advanced White Box Testing & Security Testing:-	
	Graph Coverage Criteria - Node, edge, and path coverage; prime path	
	and round trip coverage; Data Flow Criteria - du paths, du pairs,	
	subsumption relationships; Graph Coverage for Code - Control flow	
	graphs (CFGs) for complex structures (e.g., loops, exceptions); Graph	
3	Coverage for Design Elements - Call graphs, class inheritance testing,	10
	and coupling data-flow pairs; Security Testing - Fundamentals, tools	
	(OWASP, Burp Suite), and their role in protecting modern applications;	
	Case Study - Application of graph based testing and security testing	
	using industry standard tools.	
	Black Box Testing, Grey Box Testing, and Responsive Testing:-	
	Black Box Testing - Input space partitioning, domain testing, functional	
	testing (equivalence class partitioning, boundary value analysis, decision	
	tables, random testing); Grey Box Testing - Introduction, advantages,	
	and methodologies (matrix testing, regression testing, orthogonal array	
	testing); Performance Testing - Network latency testing, browser	
4	compatibility, responsive testing across multiple devices (e.g.,	10
-	BrowserStack, LambdaTest); Introduction to PEX - Symbolic execution,	10
	parameterized unit testing, symbolic execution trees, and their	
	application; GenAI in Testing - Advanced use cases for predictive and	
	responsive testing across devices and environments; Case Study-	
	Implementation of black-box, grey-box, and responsive testing using	
	PEX and AI-driven tools.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module,	
• Total of 8 Questions, each	out of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate the ability to apply a range of software testing techniques, including unit testing using JUnit and automation tools.	К2
CO2	Illustrate using appropriate tools the mutation testing method for a given piece of code to identify hidden defects that can't be detected using other testing methods.	К3
CO3	Explain and apply graph coverage criteria in terms of control flow and data flow graphs to improve code quality.	K2
CO4	Demonstrate the importance of black-box approaches in terms of Domain and Functional Testing	К3
CO5	Illustrate the importance of security, compatibility, and performance testing across devices.	К3
CO6	Use advanced tools like PEX to perform symbolic execution and optimize test case generation and also leverage AI tools for automated test case prediction and symbolic execution with PEX.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Manning Table (Mapping of Course Outcomes to	Program Outcomes)
CO I O mapping I abic (i	suppling of Course Succomes to	r rogram Outcomes

	DO1	DOJ	DO3	DO4	DO5		DO7	PO8	B PO9 PO1 PO 0 1	PO1	PO1	PO1
	PO1	PO2	PUS	PO4	PO5	PUo	PU/	PUð		1	2	
CO1	3	3	3									3
CO2	3	3	3	3	3							3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3		3							3
CO6	3	3	3	3	3							3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Software Testing.	Paul Ammann, Jeff Offutt	Cambridge University Press	2/e, 2016			
2	Software Testing and Quality Assurance : Theory and Practice	Kshirasagar Naik, Priyadarshi Tripathy	Wiley	1/e, 2008			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Software Testing	Ron Patten	Pearson	2/e, 2005			
2	Software Testing: A Craftsman's Approach	Paul C. Jorgensen	CRC Press	4/e, 2017			
3	Foundations of Software Testing	Dorothy Graham, Rex Black, Erik van Veenendaal	Cengage	4/e, 2021			
4	The Art of Software Testing	Glenford J. Myers, Tom Badgett, Corey Sandler	Wiley	3/e, 2011			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/101/106101163/					
2	https://archive.nptel.ac.in/courses/106/101/106101163/					
3	https://archive.nptel.ac.in/courses/106/101/106101163/					
4	https://archive.nptel.ac.in/courses/106/101/106101163/					

DATA WAREHOUSING

Course Code	PECDT632	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of data warehousing concepts, architecture, and the role of dimensional modeling in designing data warehouses.
- 2. To equip students with practical skills in ETL processes, OLAP operations, and optimizing data warehouses for real-world applications.

Module No.	le Syllabus Description			
	Introduction to Data Warehousing :-			
1	Overview of Data Warehousing - Need, Definition, Characteristics, Benefits, Operational vs. Analytical Systems, Applications in Industry; Architecture of Data Warehousing - Data Sources, Staging Area, Data Marts, ETL (Extract, Transform, Load) Processes, Components of a Data Warehouse (Data Models, OLAP, Metadata); Data Warehouse Models - Enterprise Data Warehouse, Virtual Warehouse, Data Mart [Text 1 : Ch 1 -3]	9		
2	Dimensional Modeling & Design :- Dimensional Modeling Basics - Facts, Dimensions, Star Schema, Snowflake Schema; Steps in Dimensional Modeling; Fact Tables, Dimension Tables; Data Warehouse Design - Top-Down & Bottom-Up, Fact Table Granularity; Slowly Changing Dimensions; Advances in Dimensional Modeling - Aggregates & Roll-Up, Time Dimension, Junk Dimensions, Degenerate Dimensions. [Text 2 : Ch 1-5]	9		

	ETL Processes & Tools :-	
3	ETL Concepts and Process - Extracting Data from Multiple Sources, Data Transformation and Cleansing, Loading Data; ETL Tools and Platforms - Common ETL Tools (Informatica, Talend, Microsoft SSIS), Scheduling and Automation of ETL Processes; Data Quality and Data Governance in ETL - Handling Incomplete and Inconsistent Data, Ensuring Data Accuracy, Consistency, and Integrity. [Text 1 : Ch 4-7]	9
4	Data Warehouse Optimization & OLAP :- Query Optimization in Data Warehouses - Indexing Strategies, Partitioning, Performance Tuning; OLAP - Architectures: MOLAP, ROLAP, HOLAP; Operations: Drill-Down, Roll-Up, Slicing, Dicing; Data Warehouse Maintenance - Data Loading Automation, Backup, and Recovery, Data Warehouse Evolution and Scalability. [Text 1 : Ch 8-10, Text 2 : Ch 7-9]	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop a data warehouse using dimensional modeling techniques such as star and snowflake schemas, effectively organizing facts and dimensions.	K3
CO2	Apply ETL processes to extract, transform, and load data from various sources into a data warehouse, ensuring data quality and integrity.	К3
CO3	Apply data warehouse performance optimization using indexing, partitioning, and other query optimization techniques for efficient data retrieval and processing.	K3
CO4	Utilize OLAP tools and techniques to perform multidimensional data analysis, including drill-down, roll-up, and slicing operations on large datasets.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3								3
CO4	3	3	3	3	3							3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Data Warehousing Fundamentals for IT Professionals	Paulraj Ponniah	Wiley	2/e, 2010			
2	The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling	Ralph Kimball, Margy Ross	Wiley	3/e, 2013			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	DW 2.0: The Architecture for the Next Generation of Data Warehousing	Derek Strauss, Genia	Morgan Kaufman	1/e, 2008			
2	Data Warehousing and Data Mining	Express Learning [eBook]	ITL Education	1/e, 2012			
3	Building the Data Lakehouse	Bill Inmon	Technics Pub.	1/e, 2021			

BASICS OF ROBOTICS AND AUTOMATION

Course Code	PECDT633	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce learners to the fundamental concepts and algorithms in Robotic Systems.
- 2. To understand the standard hardware and kinematic concepts for robot design.
- **3.** To use standard algorithms for localization, mapping, path planning, navigation and obstacle avoidance in intelligent robots.

Module No.	Syllabus Description			
1	Introduction to robotics: Degrees of freedom, Robot types, Manipulators, Anatomy of a robotic manipulator-links, joints, actuators, sensors, controllers. Robot configurations-PPP, RPP, RRP, RRR, Mobile robots- wheeled, legged, aerial robots, underwater robots, surface water robots, Dynamic characteristics- speed of motion, load carrying capacity & speed of response, Introduction to End effectors - mechanical grippers, special tools, Magnetic grippers, Vacuum grippers, adhesive grippers, Active and Passive grippers. Ethics in robotics - 3 laws - applications of robots.	10		
2	Sensor classification: Sensor classification, Internal sensors-Position sensors, velocity sensors, acceleration sensors, Force sensors external sensors-contact type, non-contact type, Digital Camera - CCD camera - CMOS camera - Omnidirectional cameras Sensor characteristics, Actuators - DC Motors - H-Bridge - Pulse Width Modulation, Stepper Motors – Servos , Hydraulic & pneumatic actuators, Control - On-Off Control - PID Control, Velocity Control and Position Control	8		

	Representation of Transformations: Representation of a Pure Translation,	
	Pure Rotation about an Axis, Combined Transformations	
	Transformations Relative to the Rotating Frame, Basic understanding of	
	Differential-Drive Wheeled Mobile Robot, Car-Like Wheeled Mobile Robot,	
	Kinematic model of a differential drive and a steered mobile robot, Degree	
	of freedom and manoeuvrability, Degree of steerability, Degree of mobility,	
	Different wheel configurations, holonomic and nonholonomic robots,	
3	Omnidirectional Wheeled Mobile Robots, Position and Orientation -	12
	Representing robot position	
	Basics of reactive navigation, Robot Localization, Challenges in localization,	
	An error model for odometric position estimation. Map Representation	
	Continuous representations, Decomposition strategies, Current challenges in	
	map representation, Probabilistic map-based localization (only Kalman	
	method), Autonomous map building, Simultaneous localization and mapping	
	(SLAM)	
	Path Planning: Graph search, deterministic graph search - , breadth first	
	search - depth first search- Dijkstra' s algorithm, A*, D* algorithms,	
	Potential field based path planning, Obstacle avoidance - Bug algorithm -	
4	Vector Field Histogram - Dynamic window approaches, Navigation	10
4	Architectures - Modularity for code reuse and sharing - Control localization,	10
	Techniques for decomposition, Alternatives for navigation - Neural	
	networks, Processing the image - Training the neural network for navigation	
	- Convolutional neural network robot control implementation	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the concepts of manipulator and mobile robotics.	K2
CO2	Choose suitable sensors, actuators and control for robot design	К3
СО3	Developing kinematic models of mobile robots and understanding robotic vision intelligence.	К3
CO4	Discover the localization and mapping methods in robotics	K3
C05	Plan the path and navigation of robot by applying artificial intelligence algorithm	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3					3						3
CO2	3	3										3
CO3	3	3		3		3						3
CO4	3			3		3						3
CO5	3			3		3						3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Introduction to Autonomous Mobile Robots	Illah Reza Nourbakhsh and Roland Siegwart	MIT Press	2/e, 2004					
2	Fundamentals of Robotics	D.K. Pratihar	Narosa Publishing	1/e, 2017					
3	Introduction to Robotics: Analysis,Control, Applications	Saeed B. Niku	Wiley	1/e, 2024					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Artificial Intelligence for Robotics	Francis X Govers	Packt Publishing	1/e, 2018					

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	https://nptel.ac.in/courses/107106090					

CLOUD COMPUTING

Course Code	PECDT634	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the concepts of Cloud Computing and Cloud Enabling Technologies
- **2.** To provide an overview of the issues involved in Cloud Management, Storage and Cloud Security
- 3. To introduce the learners to various Cloud softwares and computing platforms

Module No.	Syllabus Description						
1	Introduction to Cloud Computing: Evolution of Cloud Computing - Cloud Characteristics-Elasticity in Cloud- On-demand Provisioning - NIST Cloud Computing- Reference Architecture -Architectural Design Challenges- Deployment Models: Public, Private and Hybrid Clouds Service Models: IaaS PaaS SaaS Benefits of Cloud Computing.	10					
2	Introduction to Web Service and Service Oriented Architecture-:SOAP - REST - Basics of Virtualization Full and Para Virtualization - Implementation Levels of Virtualization- Tools and Mechanisms - Virtualization of CPU- Memory -I/O Devices -Desktop Virtualization- Server Virtualization.	8					
3	Resource Provisioning and Methods : Cloud Management Products- Cloud Storage -Provisioning Cloud Storage -Managed and Unmanaged Cloud Storage -Cloud Security- Overview- Cloud Security- Challenges- Security	10					

	Architecture design- Virtual Machine-Security Application Security- Data Security						
4	HDFS- Map Reduce- Google App Engine (GAE)- Programming Environment for GAE-Architecture of GFS -Case Studies: Openstack, Heroku, and Docker Containers -Amazon EC2, AWS, Microsoft Azure, Google Compute Engine.	8					

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the concepts of Cloud Computing	K2
CO2	Identify Cloud Enabling Technologies	K2
CO3	Explain the issues in Cloud Management, Storage and Security	K2
CO4	Use various Cloud softwares and computing platforms	К3
C05	Use the tools in various Cloud Computing platforms	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3						3	3
CO2	3	3	3		3						3	3
CO3	3	3	3	3	3						3	3
CO4	3	3	3		3						3	3
CO5	3	3	3	3	3						3	3

	Text Books								
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year					
1	Distributed Systems - Principles and Paradigms	Andrew S. Tanenbaum, Maarten Van Steen	Pearson	2/e, 2016					
2	Distributed and Cloud Computing, From Parallel Processing to the Internet of Things	Kai Hwang, Geoffrey C Fox, Jack G Dongarra	Morgan Kaufmann	1/e, 2012					
3	Cloud Computing and Big Data	Sudheep E.M, Sarith Divakar M, Lija M, Tanmay K.P, Shubham A	Cengage Learning	1/e, 2024					

Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Advanced Concepts In Operating Systems	Mukesh Singhal	McGraw Hill	1/e, 1994				
2	Cloud Computing: Principles and Paradigm	Buyya R, Broberg J, Goscinski A.	Wiley	1/e, 2011				
3	Cloud Computing: Implementation Management and Security	John W. Rittinghouse, James F. Ransome,	CRC Press	1/e, 2010.				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://onlinecourses.nptel.ac.in/noc21_cs14/preview						

DIGITAL IMAGE PROCESSING

(Common to CS/CM/CA/AM)

Course Code	PECST636	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide foundational concepts of digital image representation, processing, and analysis, including image digitization, color theory, and various data structures, to effectively manipulate and analyze digital images.
- 2. To help the learner develop the ability to implement advanced image processing techniques, such as image segmentation, edge detection, and image compression, while critically evaluating the performance and quality of these methods in practical applications.

Module No.	Syllabus Description					
1	The image, its representation and properties - Image representations, Image digitization, Sampling, Quantization, Digital image properties, Metric and topological properties of digital images, Histograms, Entropy, Visual perception of the image, Image quality, Noise in images; Color images - Physics of color, Color perceived by humans, Color spaces, Color constancy; Data structures for image analysis - Levels of image data representation, Traditional image data structures - matrices, Chains, Topological data structures - Relational structures, Hierarchical Data Structures, Pyramids, Quadtrees, Other pyramidal structures.	9				
2	 Image pre-processing - Pixel brightness transformations-, Position-dependent brightness correction, Gray-scale transformation, Geometric Transformations - Pixel coordinate transformations, Brightness interpolation. Local pre-processing, Image Smoothing, Edge detectors, Zero-crossings the second derivative,Scale in Image Processing, Canny Edge Detection, 					

	Parametric Edge Models, Edges Multi-spectral images,, Line detection by					
	local pre-processing operators, Detection of corners(interest points),					
	Image Restoration - Degradations that are easy to restore, Inverse Filtering,					
	Wiener Filtering					
	Image Segmentation - Thresholding, Threshold Detection Methods- Optimal					
	thresholding, Multi-spectral thresholding, Edge-based segmentation, Edge					
	Image Thresholding, Edge Relaxation, Border Tracing, Border Detection As					
	Graph Searching, Border Detection As Dynamic Programming, Hough					
3	Transforms, Border Detection Using Border location information,	9				
	Region construction from borders, Region-based segmentation - Region					
	merging, Region Splitting - Splitting And Merging, Watershed segmentation					
	Matching, Template Matching, Control Strategies Templating, Evaluation					
	Issues In Segmentation					
	Image Transforms - Discrete Cosine Transform, Wavelet transform, Eigen-					
	analysis, Singular value decomposition, Principal component analysis Radon Transform;					
	Image Compression - Image data Properties, Discrete Image Transforms In					
4	Image data compression, Predictive compression methods, Vector	10				
	quantization, Hierarchical and Progressive Compression methods,					
	Comparison Of Compression Methods, JPEG and MPEG image compression					
	JPEG still image compression, JPEG-2000 compression, MPEG full-motion					
	video compression.					

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 Marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the properties of monochrome and colour images and the data structures for image analysis	K2
CO2	Apply different preprocessing techniques to visualize image enhancement	К3
СО3	Understand the concept of image segmentation and various techniques used for this.	K2
CO4	Understand the various transforms used for image processing	K2
CO5	Understand the concept of image compression and apply various image compression techniques.	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3	3								2
CO3	3	3	3	3								2
CO4	3	3	3	3								2
C05	3	3	3	3								2

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Image Processing, Analysis and Machine Vision	Milan Sonka, Vaclav Hlavac, Roger Boyle	Cengage	4/e, 2015					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Fundamental of Digital Image Processing	Anil K. Jain	Pearson	1/e, 2015					
2	Digital image Processing	Ralph Gonzalez, Richard Woods	Pearson	4/e, 2018					
3	Digital Image Processing	S Jayaraman, S Esakkirajan, T Veerakumar	McGraw Hill	2/e, 2020					

	Video Links (NPTEL, SWAYAM)							
No.	Link ID							
1	https://archive.nptel.ac.in/courses/117/105/117105135/							
2	https://archive.nptel.ac.in/courses/106/105/106105032/							

RANDOMIZED ALGORITHMS

Course Code	PECST639	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GAMAT301, PCCST302, PCCST303, PCCST502	Course Type	Theory

Course Objectives:

- 1. To equip with the knowledge and skills to design and analyze algorithms that leverage randomness to improve performance, solve complex problems, and achieve better average-case or worst-case guarantees.
- 2. To provide a deep understanding of advanced randomization techniques and their applications in various domains, including hashing, graph algorithms, probabilistic method, and complexity theory.

Module No.	Syllabus Description						
1	 Basics of Randomization - Introduction to randomized algorithms, Probabilistic analysis and expectations, Benefits and applications of randomization. (Text 1 - Chapter 1) Probability Review - Basic probability theory, Random variables and distributions, Linearity of expectation. (Text 2 - Chapters 1, 2) Basic Randomized Algorithms - Randomized quicksort, Randomized selection, Randomized data structures. (Text 3 - Sections 5.3, 9.2) 	9					
2	Randomized Graph Algorithms - Randomized algorithms for graph problems, Minimum cut problems, Randomized algorithms for network flows. (Text 1 - Chapters 5, 6) Hashing and Randomized Data Structures - Universal and perfect hashing, Skip lists, Bloom filters. (Text 3 - Chapter 11) Markov Chains and Random Walks - Introduction to Markov chains, Random walks on graphs, Applications in randomized algorithms. (Text 2 - Chapters 6, 7)	9					

3	The Probabilistic Method - Basics of the probabilistic method, Linearity of expectation, First and second-moment methods. (Text 4 - Chapters 1, 2) Chernoff Bounds and Concentration Inequalities - Markov's inequality, Chebyshev's inequality, Chernoff bounds, Applications of concentration inequalities. (Text 1 - Chapter 4)	9
4	Randomized Rounding and Martingales - Randomized rounding techniques, Applications in approximation algorithms, Introduction to martingales, Azuma's inequality. (Text 5 - Chapter 14) Randomized Complexity Classes - RP, ZPP, and BPP, Relationships between complexity classes, Amplification and derandomization techniques (Text 6 - Chapter 7)	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
• 2 Questions from each	• Each question carries 9 marks.		
module.	• Two questions will be given from each module, out		
• Total of 8 Questions, each	of which 1 question should be answered.	(0)	
carrying 3 marks	• Each question can have a maximum of 3	60	
	subdivisions.		
(8x3 =24 marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Demonstrate a strong understanding of the basics of randomized algorithms, including probabilistic analysis, expectations, and the benefits of randomization	K3
CO2	Illustrate basic randomized algorithms, such as randomized quicksort, selection, and data structures, and evaluate their performance against deterministic alternatives.	K3
CO3	Apply advanced randomized techniques, including randomized graph algorithms, hashing, and Markov chains, to address complex graph and data structure problems.	K3
CO4	Show expertise in probabilistic methods, including Chernoff bounds, concentration inequalities, and randomized rounding, and use these methods to solve approximation and analysis problems in algorithms.	K3
CO5	Understand and apply concepts related to randomized complexity classes, such as RP, ZPP, and BPP, and explore amplification and derandomization techniques.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3									2
CO5	3	3	3									2

		Text Books			
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Randomized Algorithms	Rajeev Motwani and Prabhakar Raghavan	Cambridge University Press	1/e, 2004	
2	Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis	Michael Mitzenmacher and Eli Upfal	Cambridge University Press	3/e, 2017	
3	Introduction to Algorithms	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein	The MIT Press	4/e, 2023	
4	The Probabilistic Method	Noga Alon and Joel H. Spencer	Wiley-Blackwell	4/e 2016	
5	Approximation Algorithms	Vijay V. Vazirani	Springer Nature (SIE)	2/e, 2013	
6	Computational Complexity: A Modern Approach	Sanjeev Arora and Boaz Barak	Cambridge University Press	1/e, 2019	

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Concentration of Measure for the analysis of randomized algorithms	Devdatt Dubhashi and Alessandro Panconesi	Cambridge University Press	1/e, 2012				
2	The design of approximation algorithms	David Williamson and David Shmoys	Cambridge University Press	1/e, 2011				
3	Algorithms	Robert Sedgewick and Kevin Wayne	Addison-Wesley	4/e, 2023				

	Video Links (NPTEL, SWAYAM)						
No.	No. Link ID						
1	https://archive.nptel.ac.in/courses/106/103/106103187/						

WEB MINING

Course Code	PECDT635	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide essential skills in web mining and social network analysis, covering theoretical foundations, association rule and sequential pattern mining, information retrieval, text preprocessing, advanced search techniques, and web crawling, preparing them to tackle real-world data analysis challenges effectively.
- 2. To impart in-depth knowledge and practical skills in structured data extraction and web usage mining, including wrapper generation, schema matching, and various extraction techniques.
- **3.** To learn to handle data collection, preprocessing, and modelling for web usage, analyze patterns, and apply methods in recommender systems and query log mining.

Module No.	Syllabus Description	
1	Introduction – Web Mining – Theoretical background – Association rule mining – Sequential Pattern Mining -Information retrieval and Web search – Information retrieval Models-Relevance Feedback- Text and Web page Pre-processing – Inverted Index – Latent Semantic Indexing –Web Search – Meta-Search – Web Spamming.	9
2	Introduction -Social Networks Analysis- Co-Citation and Bibliographic Coupling- Page Rank: PageRank Algorithm, Link-Based Similarity Search, Enhanced Techniques for Page Ranking - HITS: HITS Algorithm, Finding Other Eigenvectors-Community Discovery: Problem Definition, Bipartite Core Communities.	9

3	 Web Crawling -A Basic Crawler Algorithm: Breadth-First Crawlers, Preferential Crawlers, Universal Crawlers- Focused Crawlers and Topical Crawlers Structured Data Extraction: Wrapper Generation – Preliminaries- Wrapper Induction- Instance Based Wrapper Learning - Automatic Wrapper Generation: Problems - String Matching and Tree Matching -Multiple Alignment - Building DOM Trees - Extraction Based on a Single List Page and Multiple pages- Introduction to Schema Matching – Schema Level Match -Domain and Instance Level Matching – Extracting and Analysing Web Social Networks. 	9
4	Web Usage Mining - Data Collection and Pre-Processing: Sources and Types of Data, Key Elements of Web Usage Data - Data Modelling for Web Usage Mining - Discovery and Analysis of Web Usage Patterns – Applications- Recommender Systems and Collaborative Filtering –Query Log Mining	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks

Sample Questions at Analyse Level

- Analyze the PageRank algorithm by implementing it on a sample network of webpages. Describe how the algorithm calculates the rank of each page based on the link structure and the concept of the damping factor. Compare the results of your implementation with a modified version.
- 2. Develop and implement both a Breadth-First Crawler and a Preferential Crawler to traverse a subset of web pages. Compare their efficiency and effectiveness in terms of speed, coverage, and relevance of the pages they collect. Analyze the differences in their crawling strategies and how they impact the quality of the data retrieved.

- 3. Analyse Apriori to perform Market Basket Analysis, discovering frequent itemsets and association rules from a retail transaction dataset. You will analyze customer buying patterns to uncover relationships between items commonly bought together. Goal is use to perform the data preprocessing, frequent itemset mining, and association rule generation. Can use any real time data sets.
- 4. Analyze the impact of co-citation and bibliographic coupling on the understanding of relationships between academic papers or web pages. Examine how these methods reveal hidden connections and influence metrics within the network.
- 5. Analyse how Latent Semantic Indexing (LSI) improves the relevance of search results by capturing latent relationships between terms and documents through dimensionality reduction and latent semantic representation.
- 6. Analyze the role of DOM trees in structured data extraction. Discuss how building and traversing DOM trees contribute to accurate data extraction from HTML pages.

Sample Questions at Evaluate Level

- 1. Evaluate the performance of the HITS algorithm in identifying hub and authority nodes in a network. Discuss how well the algorithm's hub and authority scores align with the actual importance and relevance of nodes within the network. Include an assessment of how the HITS algorithm compares to PageRank in terms of accuracy and practical application.
- 2. Evaluate the performance of schema matching techniques at different levels (schema level, domain level, and instance level).
- **3.** Evaluate the impact of query log mining on improving search engine performance and user experience.
- **4.** Evaluate the effectiveness of various preliminary techniques in wrapper generation. How do these techniques impact the accuracy and adaptability of data extraction from web pages with differing structures and content?

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain data mining process and techniques, specifically those that are relevant to Web mining.	K2
CO2	Identify the use of Social Networks Analysis in Web Mining and basics of Information retrieval	К3
CO3	Use different web crawling algorithms, such as breadth-first, preferential, universal, focused, and topical crawlers, to evaluate their effectiveness in gathering and processing web data	К3
CO4	create and implement advanced solutions for structured data extraction, including innovative methods for wrapper generation, automatic wrappers, and matching techniques for various web pages.	K5
CO5	Use schema matching and data extraction techniques to analyze web social networks and integrate diverse data sources to gain useful insights	K4
CO6	Analyze web usage mining techniques and their effectiveness in data modeling, pattern discovery, and applications like recommender systems and query log analysis.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									2
CO3	3	3	3	2								3
CO4	3	3	3	2								3
C05	3	3	3									3
C06	3	3	3	2								3

	Text Books								
Sl.	Title of the Book	Name of the	Name of the	Edition and					
No	The of the Book	Author/s	Publisher	Year					
	Web Data Mining: Exploring Hyperlinks,								
1	Contents, and Usage Data (Data- Centric	Bing Liu,	Springer	2/e, 2009					
	Systems and Applications)								

	Reference Books								
Sl. No	Title of the Book	Name of the Publisher	Edition and Year						
1	Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage	Zdravko Markov, Daniel T. Larose	John Wiley & Sons,	1/e, 2007					
2	Web Mining and Social Networking: Techniques and Applications	Guandong Xu, Yanchun Zhang, Lin Li,	Springer	1/e, 2010					
3	Mining the Web: Discovering Knowledge from Hypertext Data	Soumen Chakrabarti	Morgan Kaufmann	1/e. 2002					
4	Graph-Theoretic Techniques for Web Content Mining	Adam Schenke	World Scientific Publishing	1/e, 2005					

DEEP LEARNING

Course Code	PECDT695	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hr.30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide the learners an overview of the concepts and algorithms involved in deep learning.
- 2. To provide the basic concepts in neural networks, deep learning, optimization techniques, regularization techniques, convolutional neural networks, recurrent neural networks, autoencoders, generative models.
- **3.** To enable students to have the capability to use deep learning algorithms to solve real-world problems.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Deep Learning -The Basic Architecture of Neural Networks - Single Computational Layer: The Perceptron, Multilayer Neural Networks. Activation functions – Sign, Sigmoid, Tanh, ReLU, leaky ReLU, Hard Tanh, Softmax. Loss function. Training a Neural Network with Backpropagation. Practical issues in neural network training. Overfitting, Underfitting, Hyper parameters and Validation sets, Estimators -Bias and Variance. Introduction to deep learning, Deep feed forward network. Introduction to pytorch /tensorflow. Implementing image classification algorithms on CIFAR10 dataset using pytorch	9
2	Optimization Techniques -Introduction, setup and initialization- Kaiming, Xavier weight initializations, Vanishing and exploding gradient problems,	9

	Optimization techniques - Gradient Descent (GD), Stochastic GD, GD with	
	momentum, GD with Nesterov momentum, AdaGrad, RMSProp, Adam.,	
	Regularization Techniques - L1 and L2 regularization, Early stopping,	
	Dataset augmentation, Parameter tying and sharing, Ensemble methods,	
	Dropout, Batch normalization.	
	Convolutional Neural Networks –Architecture, Convolution operation,	
	Motivation, pooling.Variants of convolution functions, Structured outputs,	
	Data types, Efficient convolution algorithms, Applications of Convolutional	
3	Networks, Pre-trained convolutional Architectures : AlexNet, VGGnet-19,	9
5	ResNet 50,YOLO	
	Implementing object classification and detection using CNN networks in	
	python using any of deep libraries like Tensorflow, Keras, Caffe.	
	Recurrent neural networks And Generative models – Computational	
	graphs. RNN design. Encoder – decoder sequence to sequence architectures.	
	Language modeling example of Deep recurrent networks. Recursive neural	
	networks. Challenges of training Recurrent Networks. Gated RNNs LSTM	
	and GRU.	
4	Attention Mechanisms and Transformers: Transformer Architecture Self-	9
	Attention and Positional Encoding	
	Autoencoders Variational Auto-Encoder-under complete Auto-encoder,	
	stochastic encoder, denoising encoder, Applications of Autoencoders.	
	Generative models : Generative Adversarial Networks.	
	Generative models : Generative Adversarial Networks.	
	Case study: BERT, Social Media Sentiment Analysis.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Ī	Attendance	Internal Ex	Evaluate	Analyse	Total
Ì	5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks Sample Questions at Evaluate Level

- Compare and evaluate the use of different activation functions (Sigmoid, Tanh, ReLU, Leaky ReLU, Hard Tanh, Softmax) in a deep feedforward network. In which scenarios would you recommend using each activation function, and what are the potential drawbacks of each in terms of gradient vanishing, computational efficiency, and model performance?
- 2. Evaluate the role of different loss functions in neural network training. How does the choice of loss function impact the convergence of the model during backpropagation
- 3. Evaluate the impact of hyperparameter choices (e.g., learning rate, batch size, number of layers, number of neurons per layer) on the performance and convergence of deep feedforward networks

Sample Questions at Analyze Level

- 1. How does the architectural components of a Convolutional Neural Network (CNN), such as convolutional layers, pooling layers, and fully connected layers, work together to achieve image classification?
- 2. Analyze the differences in architecture and performance among pre-trained convolutional networks like AlexNet, VGGNet-19, ResNet-50, and YOLO. How do the architectural innovations in these models contribute to their effectiveness in object detection and classification tasks?

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) 	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x9 = 36 marks)	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the basic concepts of neural networks, deep learning and its practical issues	K2
CO2	Outline the standard regularization and optimization techniques for the effective training of deep neural networks	К2
CO3	Build deep learning models for different use cases.	K3
CO4	Apply the concepts of Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), auto encoder, generative models	К3
CO5	Compare activation functions, optimization techniques and deep learning models to identify in which scenarios each one is suitable	K5
CO6	Examine the various algorithms that make up the deep learning models and analyze their contributions to the final ouput	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3								3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3
CO6	3	3	3	3	3							3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Deep Learning	Goodfellow, I., Bengio,Y., Courville, A.,	MIT Press	1/e, 2016.			
2	Neural Networks and Deep Learning	Aggarwal, Charu C	Springer Nature	2/e, 2023			
3	Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms	Nikhil Buduma and Nicholas Locascio.	O'Reilly	1/e, 2017			
4	Dive into Deep Learning	Aston Zhang, Zachary C. Lipton, Mu Li, Alexander J. Smola	Cambridge University Press	1/e, 2023			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Neural Networks: A Classroom Approach,	Satish Kumar	Tata McGraw-Hill Education,	2/e, 2017			
2	Artificial Neural Networks	Yegnanarayana, B.,	PHI Learning Pvt. Ltd,	1/e, 2009			
3	Neural Networks and Deep Learning	Michael Nielsen	Online	1/e, 2018			

	Video Links (NPTEL, SWAYAM)					
No.	Link ID					
1	https://nptel.ac.in/courses/106106184					

DATA VISUALIZATION AND PROGRAMMING WITH R

Course Code	PBCDT604	CIE Marks	60
Teaching Hours/Week (L: T:P: R)	3:0:0:1	ESE Marks	40
Credits	4	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce students to fundamental knowledge in various data visualization techniques using R programming language.
- 2. To teach the security aspects involved in data visualization.
- 3. To equip the students to use data visualization tools in solving complex problems.

Module No.	Syllabus Description	Contact Hours
1	Introduction to Visualization: Need and purpose, External representation: Difficulty in Validation, Data Abstraction, Dataset types: Attribute types, Semantics, Task Abstraction: Analyse, Produce, Search, Query, Four levels of validation: Validation approaches, Validation examples. Marks and Channels, Data Visualization tools.	8
2	Arrange tables: Categorical regions: Spatial axis orientation, Spatial layout density, Arrange spatial data: Geometry, Scalar fields, Vector fields, Tensor fields. Arrange networks and trees: Connections, Matrix views, Containment, Map color: Color theory, Color maps and other channels	9
3	The R Environment - Command Line Interface and Batch processing, R Packages, Variables, Data Types, Vectors- vector operations and factor vectors, List- operations, Data Frames, Matrices and arrays, Control Statements- Branching and looping - For loops, While loops, Controlling	8

	loops. Functions- Function as arguments, Named arguments	
	The R Environment:	
	Importing data from Text files and other software, Exporting data, importing	
	data from databases, Database Connection packages, Missing Data: NA,	11
4	NULL, Transformations, Binning Data, Subsets, summarizing functions.	11
	Data Cleaning: Finding and removing Duplicates, Sorting, Analyzing Data:	
	Summary statistics, Statistical Tests: Continuous Data, Discrete Data, Power	
	tests, Common distributions- type arguments. Probability distributions,	
	Normal distributions	

Suggestion on Project Topics

1. Visualizing Demographic Data

Use R to import demographic data (e.g., census data) and create visualizations that highlight population distribution, age groups, education levels, and income categories across different regions.

2. Financial Market Analysis

Import stock market data and create visualizations that help analyze market trends, price movements, and trading volumes.

3. Visualizing Traffic Patterns

Import traffic data and visualize patterns of vehicle movement, congestion areas, and the impact of different factors like time of day or weather.

Course Assessment Method

(CIE: 60 marks, ESE: 40 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Project	Internal Ex-1	Internal Ex-2	Total
5	30	12.5	12.5	60

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	2 questions will be given from each module, out of	
module.	which 1 question should be answered. Each question	
• Total of 8 Questions,	can have a maximum of 2 subdivisions. Each question	40
each carrying 2 marks	carries 6 marks.	
(8x2 =16 marks)	(4x6 = 24 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Summarize the key techniques and theory used in visualization	K2
CO2	Design and use various methodologies present in data visualization.	K2
CO3	Illustrate uses of conditional and iterative statements in R programs.	K3
CO4	Illustrate the use of Probability distributions and basic statistical functions with R programs	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			3							3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3	3	3							3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Visualization Analysis and Design	Tamara Munzner	CRC Press	1/e,2014				
2	R Data Visualization Cookbook	Atmajitsinh Gohil	Packt	1/e, 2015				
3	R in a Nutshell	Joseph Adler	O'reilly	2/e, 2012				
4	Security Data Visualization: Graphical Techniques for Network Analysis	Greg Conti	NoStarch Press Inc	1/e, 2007				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Designing Data Visualizations: Representing Informational Relationships	Julie Steele, Noah Iliinsky	O'Relly.	1/e, 2011				
2	R for Everyone- Advanced analytics and graphics, Addison Wesley data analytics series, Pearson	Jared P Lander	Pearson	1/e, 2014				
3	Data Visualization: A Successful Design Process	Andy Kirk	PAKT	1/e, 2014				

	Video Links (NPTEL, SWAYAM)					
No.	Link ID					
1	https://www.youtube.com/watch?v=qdnM8Fpvdqc					
2	https://www.youtube.com/watch?v=GdNdmRTbbtQ					

L: Lecture	R: Project (1 Hr.), 2 Faculty Members					
(3 Hrs.)	Tutorial	Practical	Presentation			
Lecture delivery	Project identification	Simulation/ Laboratory Work/ Workshops	Presentation (Progress and Final Presentations)			
Group discussion	Project Analysis	Data Collection	Evaluation			
Question answer Sessions/ Brainstorming Sessions	Analytical thinking and self-learning	Testing	Project Milestone Reviews, Feedback, Project reformation (If required)			
Guest Speakers (Industry Experts)	Case Study/ Field Survey Report	Prototyping	Poster Presentation/ Video Presentation: Students present their results in a 2 to 5 minutes video			

PBL Course Elements

Assessment and Evaluation for Project Activity

Sl. No	Evaluation for	Allotted Marks
1	Project Planning and Proposal	5
2	Contribution in Progress Presentations and Question Answer Sessions	4
3	Involvement in the project work and Team Work	3
4	Execution and Implementation	10
5	Final Presentations	5
6	Project Quality, Innovation and Creativity	3
	Total	30

1. Project Planning and Proposal (5 Marks)

- Clarity and feasibility of the project plan
- Research and background understanding
- Defined objectives and methodology

2. Contribution in Progress Presentation and Question Answer Sessions (4 Marks)

- Individual contribution to the presentation
- Effectiveness in answering questions and handling feedback

3. Involvement in the Project Work and Team Work (3 Marks)

- Active participation and individual contribution
- Teamwork and collaboration

4. Execution and Implementation (10 Marks)

- Adherence to the project timeline and milestones
- Application of theoretical knowledge and problem-solving
- Final Result

5. Final Presentation (5 Marks)

- Quality and clarity of the overall presentation
- Individual contribution to the presentation
- Effectiveness in answering questions

6. Project Quality, Innovation, and Creativity (3 Marks)

- Overall quality and technical excellence of the project
- Innovation and originality in the project
- Creativity in solutions and approaches

DATA STRUCTURES

Course Code	OECST611	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	-	Course Type	Theory

Course Objectives:

- 1. To provide the learner a comprehensive understanding of data structures and algorithms.
- **2.** To prepare them for advanced studies or professional work in computer science and related fields.

Module No.	Syllabus Description					
1	Basic Concepts of Data Structures Definitions; Data Abstraction; Performance Analysis - Time & Space Complexity, Asymptotic Notations; Polynomial representation using Arrays, Sparse matrix (<i>Tuple representation</i>); Stacks and Queues - Stacks, Multi- Stacks, Queues, Circular Queues;	9				
2	Linked List and Memory Management Singly Linked List - Operations on Linked List, Stacks and Queues using Linked List, Polynomial representation using Linked List; Doubly Linked List.	9				
3	Trees and Graphs Trees :- Representation Of Trees; Binary Trees - Types and Properties, Binary Tree Representation, Tree Operations, Tree Traversals; Binary Search Trees - Binary Search Tree Operations; Graphs :- Definitions; Representation of Graphs; Depth First Search and Breadth First Search.	9				

	Sorting and Searching	
4	Sorting Techniques:- Selection Sort, Insertion Sort, Quick Sort, Merge Sort; Searching Techniques - Linear Search, Binary Search, Hashing - Hashing functions : Division; Collision Resolution : Linear probing, Open hashing.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1	Internal Examination- 2	Total
		(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 	60
(8x3 =24 marks)	subdivisions. (4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify appropriate data structures for solving real world problems.	К3
CO2	Describe and implement linear data structures such as arrays, linked lists, stacks, and queues.	К3
CO3	Describe and Implement non linear data structures such as trees and graphs.	К3
CO4	Select appropriate searching and sorting algorithms to be used in specific circumstances.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Fundamentals of Data Structures in C	Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,	Universities Press	2/e, 2007				
2	Introduction to Algorithms	Thomas H Cormen, Charles Leisesrson, Ronald L Rivest, Clifford Stein	PHI	3/e, 2009				

	Reference Books							
Sl. No	o Title of the Book Name of the Author/s		Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year		
1	Classic Data Structures	Samanta D.	Prentice Hall India.	2/e, 2018				
2	Data Structures and Algorithms	Aho A. V., J. E. Hopcroft and J. D. Ullman	Pearson Publication.	1/e, 2003				
3	Introduction to Data Structures with Applications	Tremblay J. P. and P. G. Sorenson	Tata McGraw Hill.	2/e, 2017				
4	Theory and Problems of Data Structures	Lipschuts S.	Schaum's Series	2/e, 2014				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://nptel.ac.in/courses/106102064					
2	https://ocw.mit.edu/courses/6-851-advanced-data-structures-spring-2012/					

DATA COMMUNICATION

(Common to CS/CM/CD/CA)

Course Code	OECST612	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the details of data communication at the lower level and the associated issues.
- **2.** To gain insight into the important aspects of data communication and computer networking systems and to apply the in practical applications.

Module No.	Syllabus Description					
1	Communication model - Simplex, Half duplex, Full duplex transmission. Periodic analog signals - Sine wave, Amplitude, Phase, Wavelength, Time and frequency domain, Bandwidth. Analog & digital data and signals. Transmission impairments - Attenuation, Delay distortion, Noise. Data rate limits - Noiseless channel, Nyquist bandwidth, Noisy channel, Shannon's capacity formula. Guided transmission media - Twisted pair, Coaxial cable, Optical fiber. Unguided media - Radio waves, Terrestrial microwave, Satellite microwave, Infrared. Wireless propagation - Ground wave propagation, Sky wave propagation, Line-of-Sight (LoS) propagation.	10				
2	Digital data to digital signal – Non-Return-to-Zero (NRZ), Return-to-Zero (RZ), Multilevel binary, Biphase. Analog data to digital signal - Sampling theorem, Pulse Code Modulation (PCM), Delta Modulation (DM). Digital data to analog signal - Amplitude Shift Keying (ASK), Frequency Shift	9				

	Keying (FSK), Phase Shift Keying (PSK). Analog data to analog signal - Amplitude Modulation (AM), Frequency Modulation (FM), Phase Modulation (PM).	
3	Multiplexing - Frequency Division Multiplexing (FDM), Wavelength Division Multiplexing (WDM), Time Division Multiplexing (TDM), Characteristics, Synchronous TDM, Statistical TDM. Spread spectrum techniques - Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum (FHSS), Code Division Multiplexing, Code Division Multiple Access (CDMA).	8
4	Digital data communication techniques - Asynchronous transmission, Synchronous transmission. Detecting and correcting errors - Types of errors, Parity check, Checksum, Cyclic Redundancy Check (CRC), Forward Error Correction (FEC), Hamming distance, Hamming code. Basic principles of switching - Circuit switching, Packet switching, Message switching.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total		
• 2 Questions from each	• Each question carries 9 marks.			
module.	• Two questions will be given from each module, out			
• Total of 8 Questions, each	of which 1 question should be answered.			
carrying 3 marks	• Each question can have a maximum of 3	60		
	subdivisions.			
(8x3 =24 marks)	(4x9 = 36 marks)			

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify the characteristics of signals for analog and digital transmissions so as to define the associated real world challenges.	K3
CO2	Select transmission media based on characteristics and propagation modes.	K3
CO3	Choose appropriate signal encoding techniques for a given scenario	K3
CO4	Illustrate multiplexing and spread spectrum technologies	K2
CO5	Use error detection, correction and switching techniques in data communication	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	2								3
CO3	3	3		2								3
CO4	3	3	3	2								3
CO5	3	3	3	2								3

	Text Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Data Communications and Networking	Forouzan B. A	McGraw Hill	6/e, 2019							
2	Data and Computer Communication	William Stallings	Pearson	10/e, 2016							

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Mobile Communications	Schiller J	Pearson	2/e, 2009						
2	Fundamentals of Networking and Communication	Curt M. White	Cengage	7/e, 2010						

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://nptel.ac.in/courses/106105082								

FOUNDATIONS OF CRYPTOGRAPHY

Course Code	OECST613	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. Develop a foundational understanding of mathematical concepts in cryptography,
- 2. Gain comprehensive knowledge of cryptographic methods.
- 3. Understand the principles and need for computer security.

Module No.	Syllabus Description	Contact Hours
1	Integer Arithmetic – Divisibility, Greatest Common Divisor Euclid's and Extended Euclid's Algorithm for GCD; Modular Arithmetic – Operations, Properties, Polynomial Arithmetic; Algebraic Structures – Group Ring Field.	9
2	Prime numbers and Prime Factorisation - Primitive Roots, Existence of Primitive Roots for Primes, Fermat's Theorem, Primality Testing, Euler's Theorem, Euler's Totient Function, Discrete Logarithms, Modular Arithmetic, Chinese Remainder Theorem.	9
3	Principles of security - Types of Security attacks, Security services, Security Mechanisms; Cryptography - Introduction, cryptographic notations, substitution techniques, Transposition Techniques, limitations of classical cryptography.	9
4	Symmetric key Ciphers - Block Cipher principles & Algorithms- DES, AES, Differential and Linear Cryptanalysis; Asymmetric Key Ciphers- RSA, ECC; Hash Functions - MD5, SHA-1.	9

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the integer arithmetic operations including divisibility and GCD algorithms, modular arithmetic operations and properties, polynomial arithmetic, and algebraic structures such as groups, rings, and fields.	K2
CO2	Describe the number theory concepts essential for cryptographic applications and mathematical problem-solving.	К2
CO3	Explain the security principles, types of attacks, and protective measures, alongside a thorough understanding of cryptographic techniques and their applications in securing data.	K2
CO4	Discuss symmetric and asymmetric key cryptography, including block cipher principles, algorithms, public key cryptosystems, and hash functions	К2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2										2
CO2	2	2										2
CO3	2	2										2
CO4	2	2										2

	Text Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Cryptography & Network Security	Behrouz A. Forouzan	McGraw Hill	3/e, 2007				
2	Security in Computing	Charles P. Pfleeger, Shari L. Pfleeger, Jonathan Margulies	Prentice Hall	5/e, 2015				
3	Introduction to Cryptography: Principles and Applications	H. Delfs, H. Knebl	Springer	1/e, 2002				
4	A Classical Introduction to Cryptography: Applications for Communications Security	Serge Vaudenay	Springer	1/e, 2009				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Cryptography and Network Security	William Stallings	Pearson Education	7/e,2017				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/111/101/111101137/					
2	https://nptel/courses/video/106105031/L17.html					
3	https://onlinecourses.nptel.ac.in/noc22_cs90/preview					

MACHINE LEARNING FOR ENGINEERS

(Common to CS/CA/CD/CM/CR/AD/AM/AI)

Course Code	OECST614	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide the basic concepts and algorithms in machine learning.
- 2. To discuss the standard and most popular supervised and unsupervised learning algorithms.

Module No.	Syllabus Description					
1	 Introduction to ML Machine Learning vs. Traditional Programming, Machine learning paradigms - supervised, semi-supervised, unsupervised, reinforcement learning. Basics of parameter estimation - maximum likelihood estimation (MLE) and maximum aposteriori estimation (MAP), Bayesian formulation. Supervised Learning Feature Representation and Problem Formulation, Role of loss functions and optimization Regression - Linear regression with one variable, Linear regression with multiple variables - solution using gradient descent algorithm and matrix method. 	10				
2	Classification - Naïve Bayes, KNN Generalisation and Overfitting - Idea of overfitting, LASSO and RIDGE regularization, Idea of Training, Testing, Validation	8				

Evaluation measures - Classification - Precision, Recall, Accuracy, F-	
Measure, Receiver Operating Characteristic Curve(ROC), Area Under	
Curve (AUC).	
Regression - Mean Absolute Error (MAE), Root Mean Squared Error	
(RMSE), R Squared/Coefficient of Determination.	
Neural Networks (NN) - Perceptron, Neural Network - Multilayer feed-	
forward network, Activation functions (Sigmoid, ReLU, Tanh), Back propagation algorithm.	8
Decision Trees – Information Gain, Gain Ratio, ID3 algorithm	
Unsupervised Learning	
Clustering - Similarity measures, Hierarchical Clustering - Agglomerative Clustering, partitional clustering, K-means clustering	
Dimensionality reduction - Principal Component Analysis, Multidimensional scaling	10
Ensemble methods - bagging, boosting	
Resampling methods - Bootstrapping, Cross Validation. Practical aspects - Bias-Variance trade-off	
	 Measure, Receiver Operating Characteristic Curve(ROC), Area Under Curve (AUC). Regression - Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), R Squared/Coefficient of Determination. Neural Networks (NN) - Perceptron, Neural Network - Multilayer feed- forward network, Activation functions (Sigmoid, ReLU, Tanh), Back propagation algorithm. Decision Trees – Information Gain, Gain Ratio, ID3 algorithm Unsupervised Learning Clustering - Similarity measures, Hierarchical Clustering - Agglomerative Clustering, partitional clustering, K-means clustering Dimensionality reduction - Principal Component Analysis, Multidimensional scaling Ensemble methods - bagging, boosting Resampling methods - Bootstrapping, Cross Validation. Practical aspects -

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part A Part B	
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	ons, each of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3 sub	60
	divisions.	
(8x3 =24marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate Machine Learning concepts and basic parameter estimation methods	K2
CO2	Demonstrate supervised learning concepts (regression, classification)	К3
CO3	Illustrate the concepts of Multilayer neural network and Decision trees	K3
CO4	Describe unsupervised learning concepts and dimensionality reduction techniques	К3
CO5	Use appropriate performance measures to evaluate machine learning models	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								2
CO2	3	3	3	3	2							2
CO3	3	3	3	3	2							2
CO4	3	3	3	3	2							2
CO5	3	3	3	3	2							2

Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Machine Learning	Ethem Alpaydin	MIT Press	2/e, 2010			
2	Data Mining and Analysis: Fundamental Concepts and Algorithms	Mohammed J. Zaki, Wagner Meira	Cambridge University Press	1/e, 2016			

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Machine Learning	Tom Mitchell	McGraw-Hill	1997				
2	Applied Machine Learning	M Gopal	Pearson	2/e, 2018				
3	Neural Networks for Pattern Recognition	Christopher Bishop	Oxford University Press	1995				
4	Machine Learning: A Probabilistic Perspective	Kevin P Murphy	MIT Press	1/e, 2012				
5	The Elements Of Statistical Learning	Trevor Hastie, Robert Tibshirani, Jerome Friedman	Springer	2/e, 2007				

Video Links (NPTEL, SWAYAM)			
Module No.	Link ID		
1	https://youtu.be/fC7V8QsPBec?si=8kqBn7x1RG5V1J		
2	https://youtu.be/g_LURKuIj4?si=Xj10NPfMfpQSOhVx		
3	https://youtu.be/yG1nETGyW2E?si=ySlxpeWuFAUQBf7-		
4	https://youtu.be/zop2zuwF_bc?si=W7TpSHLdi4rykva4		

OBJECT ORIENTED PROGRAMMING

(Common to CS/CA/CD/CM/AM/AD)

Course Code	OECST615	CIE Marks	40
Teaching Hours/Week (L:T:P:R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To teach the core object-oriented principles such as abstraction, encapsulation, inheritance, and polymorphism, robust error-handling using exception mechanisms to ensure program reliability.
- 2. To equip the learner to develop object oriented programs encompassing fundamental structures, environments, and the effective utilization of data types, arrays, strings, operators, and control statements for program flow in Java.
- **3.** To enable the learner to design and develop event-driven graphical user interface (GUI) database applications using Swing and database connection components.

SYLLABUS

Module No.	Syllabus Description			
1	Introduction to Java - Java programming Environment and Runtime Environment (Command Line & IDE); Java compiler; Java Virtual Machine; Primitive Data types and Wrapper Types; Casting and Autoboxing; Arrays; Strings; Vector class; Operators - Arithmetic, Bitwise, Relational, Boolean Logical, Assignment, Conditional (Ternary); Operator Precedence; Control Statements - Selection Statements, Iteration Statements and Jump Statements; Functions; Command Line Arguments; Variable Length Arguments; Classes; Abstract Classes; Interfaces; OOP Concepts - Data abstraction, encapsulation, inheritance, polymorphism, Procedural and object oriented programming paradigm; Microservices; Object Oriented Programming in Java - Declaring Objects; Object Reference; Introduction to	10		

	Methods; Constructors; Access Modifiers; <i>this</i> keyword.	
2	Polymorphism - Method Overloading, Using Objects as Parameters, Returning Objects, Recursion; Static Members, Final Variables, Inner Classes. Inheritance - Super Class, Sub Class, Types of Inheritance, The super keyword, protected Members, Calling Order of Constructors; Method Overriding, Dynamic Method Dispatch, Using <i>final</i> with Inheritance.	8
3	Packages and Interfaces – Packages - Defining a Package, CLASSPATH,Access Protection, Importing Packages; Interfaces - Interfaces v/s Abstractclasses, defining an interface, implementing interfaces, accessingimplementations through interface references, extending interface(s);Exception Handling - Checked Exceptions, Unchecked Exceptions, try Blockand catchClause, Multiple catchClauses, Nestedthrowsand finally, Java Built-in Exceptions, Custom Exceptions.	9
4	Swings fundamentals – Overview of AWT, Swing v/s AWT, Swing KeyFeatures, Swing Controls, Components and Containers, Swing Packages,Event Handling in Swings, Swing Layout Managers, Exploring Swings–JFrame, JLabel, The Swing Buttons, JTextField; Event handling – EventHandling Mechanisms, Delegation Event Model, Event Classes, Sources ofEvents, Event Listener Interfaces, Using the Delegation Event Model;Developing Database Applications using JDBC – JDBC overview, Types,Steps, Common JDBC Components, Connection Establishment.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1	Internal Examination- 2	Total
		(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

Course Outcome		
CO1	Explain the process of developing Java programs, including their structure and components, to demonstrate proficiency.	K2
CO2	Utilize object-oriented programming principles in the design and implementation of Java applications.	K3
CO3	Develop and manage Java packages and interfaces, enhancing code modularity and reusability.	K3
CO4	Implement error handling using Java's exception mechanisms and leverage interfaces for modular applications.	K3
CO5	Develop event-driven Java GUI applications with database connectivity.	К3

CO-PO Mapping Table:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3		3							3
CO4	3	3	3		3							3
CO5	3	3	3		3							3

	Text Books								
Sl. No	Title of the Book Name of the Author/s		Name of the Publisher	Edition and Year					
1	Java: The Complete Reference	Herbert Schildt	Tata McGraw Hill	13/e, 2024					
2	Introduction to Java Programming, Comprehensive Version	Y Daniel Liang	Pearson	10/e, 2014					
3	Head First Design Patterns	Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra	O'Reilly Media	1/e, 2004					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year 3/e, 2022					
1	Head First Java: A Brain Friendly Guide	Kathy Sierra & Bert Bates	O'Reilly						
2	JAVA [™] for Programmers	Paul Deitel	PHI	11/e, 2018					
3	Clean Code : A Handbook of Agile Software Craftsmanship	Robert C. Martin	Prentice Hall	1/e, 2008					
4	Programming with Java	E Balagurusamy	McGraw Hill	6/e, 2019					
5	Java For Dummies	Barry A. Burd	Wiley	8/e, 2022					
6	Effective Java	Joshua Bloch	Pearson	3/e, 2018					

	Video Links (NPTEL, SWAYAM)							
Module No.	Link ID							
1	https://nptel.ac.in/courses/106105191 (Lecture no: 9, 10, 1, 2, 3, 4)							
2	https://nptel.ac.in/courses/106105191 (Lecture no: 1, 7, 8, 11, 12, 13, 14, 15, 16)							
3	https://nptel.ac.in/courses/106105191 (Lecture no: 17, 18, 19, 20, 21, 22, 23, 24, 25, 26)							
4	https://nptel.ac.in/courses/106105191 (Lecture no: 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55)							

BIG DATA PROCESSING LAB

Course Code	PCCDL607	CIE Marks	50
Teaching Hours/Week (L: T:P: R)	0:0:3:0	ESE Marks	50
Credits	2	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCDT504	Course Type	Lab

Course Objectives:

- 1. To equip students with hands-on experience in setting up and managing Hadoop ecosystems.
- **2.** To provide practical experience in using various data processing tools such as Hive, Pig, and Apache Spark.
- 3. To introduce students to R programming and its applications in data analysis

Expt. No.	Experiments
1	Perform setting up and Installing Hadoop in any of the three operating modes:
1	Standalone, Pseudo distributed, fully distributed.
2	Explore the various shell commands in Hadoop.
	Implement the following file management tasks in Hadoop:
3	Adding Files and Directories
3	• Retrieving Files
	• Deleting Files
4	Implement a word count program using Map Reduce.
5	Write a R program to find the factorial and check for palindromes.
6	Write a R program to solve linear regression and make predictions.
7	Write a R program to solve logistic regression.
8	Implement statistical operations using R.
9	Implement a program to find variance, covariance and correlation between different types
7	of attributes.
10	Implement SVM Classifier using packages

11	Implement Decision tree Classifier using packages
12	Implement clustering algorithm.
13	Explore Hive with its basic commands
14	Design a Data Model using NoSQL Databases such as Hive or Cassandra
15	Write Pig Latin scripts to sort, group, join, project, and filter your data.
16	Install, Deploy and configure Apache Spark.

Course Assessment Method

(CIE: 50 marks, ESE: 50 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Preparation/Pre-Lab Work experiments, Viva and Timely completion of Lab Reports / Record (Continuous Assessment)	Internal Examination	Total
5	25	20	50

End Semester Examination Marks (ESE):

Procedure/	Conduct of experiment/	Result with			
Preparatory	Execution of work/	valid inference/	Viva	Dered	T-4-1
work/Design/	troubleshooting/	Quality of	voce	Record	Total
Algorithm	Programming	Output			
10	15	10	10	5	50

- Submission of Record: Students shall be allowed for the end semester examination only upon submitting the duly certified record.
- Endorsement by External Examiner: The external examiner shall endorse the record

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Illustrate the setting up of and Installing Hadoop in one of the three operating modes.	К3
CO2	Implement the file management tasks in Hadoop and explore the shell commands	К3
CO3	Implement different tasks using Hadoop Map Reduce programming model.	К3
CO4	Implement Pig Scripting operations and Spark Application functionalities.	К3
CO5	Implement data extraction from files and other sources and perform various data manipulation tasks on them using R Program.(Cognitive	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO- PO Mapping (Mapping of Course Outcomes with Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							3
CO2	3	3	3		2							3
CO3	3	3	3		2							3
CO4	3	3	3		2							3
CO5	3	3	3		2							3

	Text Books									
Sl. No	Title of the Book	Sitle of the BookName of the Author/s		Edition and Year						
1	Professional Hadoop Solutions	Boris Lublinsky, Kevin T. Smith, Alexey Yakubovich	John Wiley & Sons, Inc	2013						
2	Hadoop: The Definitive Guide	Tom White	O'Reilly Media	3/e, 2012						

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Mining of Massive Datasets	Jure Leskovec, Anand Rajaraman and Jeffrey David Ullman	Cambridge University Press	2/e, 2016			
2	Programming in Hive	Edward Capriolo, Dean Wampler, and Jason Rutherglen	O'Reilly Media	1/e, 2012			
3	R in Action	Robert I. Kabacoff	Manning Publications	3/e, 2022			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://www.youtube.com/watch?v=Qy-302ISM5M					
2	https://www.youtube.com/watch?v=Q5g6lYUn6Q4					
3	https://www.youtube.com/watch?v=6AmrSocRItg					
4	https://www.youtube.com/watch?v=D4HqQ8-Ja9Y					

Continuous Assessment (25 Marks)

1. Preparation and Pre-Lab Work (7 Marks)

- Pre-Lab Assignments: Assessment of pre-lab assignments or quizzes that test understanding of the upcoming experiment.
- Understanding of Theory: Evaluation based on students' preparation and understanding of the theoretical background related to the experiments.

2. Conduct of Experiments (7 Marks)

- Procedure and Execution: Adherence to correct procedures, accurate execution of experiments, and following safety protocols.
- Skill Proficiency: Proficiency in handling equipment, accuracy in observations, and troubleshooting skills during the experiments.
- Teamwork: Collaboration and participation in group experiments.

3. Lab Reports and Record Keeping (6 Marks)

- Quality of Reports: Clarity, completeness and accuracy of lab reports. Proper documentation of experiments, data analysis and conclusions.
- Timely Submission: Adhering to deadlines for submitting lab reports/rough record and maintaining a well-organized fair record.

4. Viva Voce (5 Marks)

•Oral Examination: Ability to explain the experiment, results and underlying principles during a viva voce session.

Final Marks Averaging: The final marks for preparation, conduct of experiments, viva, and record are the average of all the specified experiments in the syllabus.

Evaluation Pattern for End Semester Examination (50 Marks)

1. Procedure/Preliminary Work/Design/Algorithm (10 Marks)

- Procedure Understanding and Description: Clarity in explaining the procedure and understanding each step involved.
- Preliminary Work and Planning: Thoroughness in planning and organizing materials/equipment.

- Algorithm Development: Correctness and efficiency of the algorithm related to the experiment.
- Creativity and logic in algorithm or experimental design.

2. Conduct of Experiment/Execution of Work/Programming (15 Marks)

• Setup and Execution: Proper setup and accurate execution of the experiment or programming task.

3. Result with Valid Inference/Quality of Output (10 Marks)

- Accuracy of Results: Precision and correctness of the obtained results.
- Analysis and Interpretation: Validity of inferences drawn from the experiment or quality of program output.

4. Viva Voce (10 Marks)

- Ability to explain the experiment, procedure results and answer related questions
- Proficiency in answering questions related to theoretical and practical aspects of the subject.

5. Record (5 Marks)

• Completeness, clarity, and accuracy of the lab record submitted

SEMESTER 7

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

RECOMMENDATION SYSTEMS

Course Code	PECDT741	CIE Marks	40
TeachingHours/Week(L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Theory

Course Objectives:

- 1. To facilitate the learner to get an overview of recommender systems.
- 2. To introduce learners to the concepts of Collaborative Filtering, Content-based recommendation, Knowledge based recommendation, Hybrid approaches and Evaluating Recommender System.

SYLLABUS

Module No.	Syllabus Description		
1	Introduction to basic concepts and Recent developments: Collaborative recommendation - User-based nearest neighbour recommendations, Item- based nearest neighbour recommendation, Collaborative recommendation ratings, Model-based and pre-processing- based approaches, Recent practical approaches and systems Content-based recommendation - Content representation and content similarity Similarity-based retrieval and Other text classification methods	Hours 8	
2	Knowledge-based recommendation : Knowledge representation and reasoning, Constraints, Cases and similarities, Interacting with constraint- based recommenders - Defaults Dealing with unsatisfiable requirements and empty result set, Proposing repairs for unsatisfiable requirements, Ranking the items/utility-based recommendation, Interacting with case-based recommenders, Critiquing -Compound critiquing, Dynamic critiquing	9	
3	Hybrid recommendation approaches : Opportunities for hybridizationRecommendation paradigms, Hybridization designs,Monolithic	8	

_

Course Assessment Method (CIE: 50 marks, ESE: 100 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Micro project	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
10	15	10	10	50

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 14 marks.	
• Total of 10 Questions, each carrying 3 marks	• Two questions will be given from each module, out of which 1 question should be answered.	100
(10x3 =30 marks)	• Each question can have a maximum of 2 subdivisions.	
	(5x14 = 70 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the basic concepts of recommender systems	К2
CO2	Summarize the features of constraint based and case-based knowledge-based recommender systems	K2
CO3	Illustrate the use of hybridizing algorithms	К2
CO4	Examine the design issues in offline recommender evaluation	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Recommender Systems: An Introduction	Jannach D., Zanker M. and FelFering A	Cambridge University Press	1/e, 2011				
2	Recommender Systems: The Textbook	C.C. Aggarwal	Springer	1/e, 2016				

Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Recommender systems handbook	F. Ricci, L Rokach, B. Shapira and P.B. Kantor	Springer	1/e, 2010		
2	Recommender Systems For Learning	Manouselis N., Drachsler H., Verbert K., Duval E	Springer	1/e, 2013		

SEMESTER 7

FINANCIAL DATA SCIENCE

(Common CD/AD/CR)

Course Code	PECDT742	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To give the students an understanding of how data science techniques can be applied to solve complex financial problems, such as risk modeling, fraud detection, and algorithmic trading.
- 2. To enable the students to implement machine learning algorithms for financial applications, including portfolio optimization, and trading strategies.

SYLLABUS

Module No.	Syllabus Description					
1	Overview of Financial Systems - Financial markets, instruments, and data; Data Science in Finance - Role of data science, types of data in finance (structured, unstructured, time-series, etc.); Financial Data Acquisition - Sources of financial data, Data retrieval from the Internet; Data Preprocessing - Data cleaning, handling missing data, outlier detection, normalization, and scaling; Exploratory Data Analysis - Visualizing financial data (candlestick charts, histograms), statistical summaries.	9				
2	Supervised Learning in Finance - Decision trees, random forests, and support vector machines (SVM) for stock prediction; Unsupervised Learning for Financial Clustering - K-means clustering and principal component analysis (PCA) for risk classification; Neural Networks in Finance - Overview of deep learning techniques, simple models for predicting financial outcomes; Model Evaluation and Performance Metrics: Evaluation metrics like RMSE, R ² , confusion matrix, accuracy, precision, and recall.	9				
3	Financial Risk Types - Credit risk, market risk, liquidity risk; Risk Modeling Techniques - Value at Risk (VaR), Monte Carlo simulations; Stress Testing	9				

9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
2. 2. Our stiener frame and mer half	- Deale months and the	
• 2 Questions from each module.	1	
• Total of 8 Questions, each	• Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain how data science methods are applied in financial markets, trading, risk management, and fraud detection.	K3
CO2	Apply various machine learning algorithms (such as decision trees, SVM, and neural networks) to solve financial problems.	К3
СОЗ	Develop and backtest trading algorithms and optimizing financial portfolios.	К3
CO4	Apply risk modeling techniques and implement fraud detection systems in financial contexts.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Data Science for Economics and Finance	Sergio Consoli, Diego Reforgiato Recupero, Michaela Saisana	Springer	1/e, 2021
2	Hands-On Machine Learning for Algorithmic Trading	Stefan Jansen	Packt	1/e, 2018
3	Analyzing Financial Data and Implementing Financial Models Using R	Clifford S. Ang	Springer	2/e, 2021
4	Adventures in Financial Data Science	Graham L Giller	World Scientific	2/e, 2022
5	Hands-On Data Analysis in R for Finance	Jean-François Collard	CRC Press	1/e, 2023
6	Financial Data Analytics: Theory and Application	Sinem D. Koseoglu	Springer	1/e, 2021

FOUNDATIONS OF COMPUTER VISION

Course Code	PECDT743	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce learners to the basics of image formation, key computer vision concepts, methods, techniques, pattern recognition, and various problems in designing computer vision and object recognition systems.
- 2. To enable the learners to understand the fundamentals of computer vision and machine and deep learning models to develop applications in computer vision.

Module No.	Syllabus Description				
		Hours			
	Fundamentals in Computer Vision: Camera Calibration: Pinhole camera				
	model, Geometric Image Features: Curves, Surfaces, Analytical Image				
	Features: Elements of Analytical Euclidean Geometry, Geometric Camera				
	Parameters,				
	Stereopsis: Binocular Camera Geometry, Epipolar Constraint, Binocular	0			
1	Reconstruction, Local Methods for Binocular Fusion, Global Methods for	9			
	Binocular Fusion.				
	Features and Filters: Linear Filters: Linear Filters and Convolution, Shift				
	Invariant Linear Systems., Estimating Derivatives with Finite Differences,				
	Noise, Edges and Gradient- based Edge Detectors				
	Image Gradients: Computing the Image Gradient, Gradient Based Edge and				
	Corner Detection. Filters as Templates: Normalized Correlation and Finding	0			
2	Patterns.	9			

SYLLABUS

	Machine Learning for Computer Vision: Introduction, Dataset for	
	Machine Perception: Labelled and Un-labelled Data, Basics of Classification	
	and Clustering, Multi-Class Perspective.	
3	Machine Learning for Computer Vision: Machine Learning, Deep Learning Use Cases.	7
	Machine Learning Models for Vision: Image Vision: Pretrained Model,	
	Transfer Learning, Fine-Tuning, Convolutional Networks, Convolutional	
	Filters, Stacking Convolutional Layers, Pooling Layers: AlexNet and VGG19	
	Segmentation and Object detection: Segmentation Using Clustering	
	Methods: Human vision, Grouping and Gestalt	
	Image Segmentation by Clustering Pixels : Simple Clustering Methods, Clustering and Segmentation by K-means	
	Object detection: YOLO, Segmentation: Mask R-CNN and Instance	
4	Segmentation, U-Net and Semantic Segmentation, Model Quality Metrics	7
7	A case study to compare performance of various models on a suitable dataset.	1

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	 Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the basic concepts and terminologies associated with Camera Calibration, Stereopsis in computer vision	K2
CO2	Apply filters for feature extraction and for finding patterns.	К3
CO3	Build machine learning models for computer vision applications	K3
CO4	Implement segmentation and object detection models	К3
CO5	Build different machine learning models for segmentation and object detection applications.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3	3								3
C05	3	3	3	3	3							3

Outcomes)

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computer vision: A modern approach	Forsyth, David, and Jean Ponce	Prentice hall	1/e, 2011			
2	Emerging topics in computer vision	Medioni, Gerard and Sing Bing Kang	РНІ	1/e, 2004			
3	Practical Machine Learning for Computer Vision	Valliappa Lakshmanan, Martin Görner, Ryan Gillard	O'Reilly Media	1/e, 2021			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computer vision: algorithms and applications	Szeliski, Richard	Springer Science & Business Media	1/e, 2010			
2	ImageSegmentation:Principles,Techniques,andApplications	Tao Lei, Asoke K. Nandi	John Wiley & Sons	1/e, 2022			
3	Deep Learning in Computer Vision Principles and Applications	Ali Ismail Awad, Mahmoud Hassaballah	CRC Press	1/e, 2020			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	Computer Vision and Image Processing - Fundamentals and Applications by Prof. M. K. Bhuyan at IIT Guwahati https://onlinecourses.nptel.ac.in/noc23_ee39/preview					
2	Computer Vision by Prof. Jayanta Mukhopadhyay at IIT Kharagpur https://onlinecourses.nptel.ac.in/noc19_cs58/preview					
3	Deep Learning for Computer Vision by Prof. Vineeth N Balasubramanian at IIT Hyderabad https://onlinecourses.nptel.ac.in/noc21_cs93/preview					
4	COVID-Net Open Source Initiative - COVIDx CT-3 Dataset https://www.kaggle.com/datasets/hgunraj/covidxct					

WEB PROGRAMMING

(Common to CS/CA/CM/CD/CR/AD/AM)

Course Code	PECST742	CIE Marks	40
Teaching Hours/Week(L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To equip students with the knowledge and skills required to create, style, and script web pages using HTML5, CSS, JavaScript, and related technologies.
- 2. To provide hands-on experience with modern web development tools and frameworks such as React, Node.js, JQuery, and databases, enabling students to design and build dynamic, responsive, and interactive web applications.

SYLLABUS	

Module No.	e Syllabus Description		
1	Creating Web Page using HTML5 - Introduction, First HTML5 example, Headings, Linking, Images, Special Characters and Horizontal Rules, Lists, Tables, Forms, Internal Linking, meta Elements, HTML5 Form input Types, Input and datalist Elements and autocomplete Attribute, Page-Structure Elements; Styling Web Page using CSS - Introduction, Inline Styles, Embedded Style Sheets, Linking External Style Sheets, Positioning Elements:, Absolute Positioning, z-index, Positioning Elements: Relative Positioning, span, Backgrounds, Element Dimensions, Box Model and Text Flow, Media Types and Media Queries, Drop-Down Menus; Extensible Markup Language	9	
2	 - Introduction, XML Basics, Structuring Data, XML Namespaces, Document Type Definitions (DTDs), XML Vocabularies Scripting language - Client-Side Scripting, Data Types, Conditionals, Loops, Arrays, Objects, Function Declarations vs. Function Expressions, Nested 	9	

	Functions , The Document Object Model (DOM) - Nodes and NodeLists,	
	Document Object, Selection Methods, Element Node Object, Event Types	
	Asynchronous JavaScript and XML - AJAX : Making Asynchronous	
	Requests, Complete Control over AJAX, Cross-Origin Resource Sharing	
	JavaScript library - jQuery - jQuery Foundations - Including jQuery, jQuery	
	Selectors, Common Element Manipulations in jQuery, Event Handling in	
	jQuery	
	JavaScript runtime environment : Node.js - The Architecture of Node.js,	
	Working with Node.js, Adding Express to Node.js; Server-side programming	
	language : PHP - What Is Server-Side Development? Quick tour of PHP,	
3	Program Control , Functions , Arrays , Classes and Objects in PHP , Object-	9
5	Oriented Design ; Rendering HTML : React - ReactJS Foundations : The	,
	Philosophy of React, What is a component? Built- in components, User-	
	defined components - Types of components, Function Components,	
	Differences between Function and Class Components	
	SPA – Basics, Angular JS; Working with databases - Databases and Web	
	Development, SQL, Database APIs, Accessing MySQL in PHP; Web	
4	Application Design - Real World Web Software Design, Principle of Layering	9
-	, Software Design Patterns in the Web Context, Testing; Web services -	7
	Overview of Web Services - SOAP Services, REST Services, An Example	
	Web Service, Web server - hosting options	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Develop structured web pages with HTML5 and style them using CSS	К3
	techniques, including positioning, media queries, and the box model.	
CON	Write client-side scripts using JavaScript and utilize jQuery for DOM	V2
CO2	manipulation, event handling, and AJAX requests to create responsive and interactive user interfaces.	K3
	Build and deploy server-side applications using Node.js, Express, and	
CO3	PHP, and integrate databases using SQL to store and retrieve data for	K3
	dynamic content generation.	
	Utilize React for building component-based single-page applications	
CO4	(SPAs), understanding the fundamental principles of component	K3
04	architecture, and leveraging AngularJS for web application	КJ
	development.	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	3	-	-	-	-	-	-	3
CO2	3	3	3	-	3	-	-	-	-	-	-	3
CO3	3	3	3	-	3	-	-	-	-	-	-	3
CO4	3	3	3	-	3	-	-	-	-	-	-	3

	Text Books								
SI. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year					
1	Fundamentals of Web Development	Randy Connolly, Ricardo Hoar	Pearson	1/e, 2017					
2	Building User Interfaces with ReactJS - An Approachable Guide	Chris Minnick	Wiley	1/e, 2022					
3	Internet & World Wide Web - How to Program	Paul J. Deitel, Harvey M. Deitel, Abbey Deitel	Pearson	1/e, 2011					
4	SPA Design and Architecture: Understanding Single Page Web Applications	Emmit Scott	Manning Publications	1/e, 2015					

	Reference Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year					
1	A Hand Book On Web Development : From Basics of HTML to JavaScript and PHP	Pritma Jashnani	Notion press	1/e, 2022					
2	Advanced Web Development with React	Mohan Mehul	BPB	1/e, 2020					
3	JavaScript Frameworks for Modern Web Development	Tim Ambler, Sufyan bin Uzayr, Nicholas Cloud	Apress	1/e, 2019					

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://archive.nptel.ac.in/courses/106/106/106106222/						
2	https://archive.nptel.ac.in/courses/106/106/106106156/						

BIOINFORMATICS

Course Code	PECST743	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To understand the fundamental concepts in Molecular Biology, Genomics, Proteomics and Modelling.
- 2. To introduce bio macromolecules such as genes and proteins, different biological databases, and tools and algorithms for biological data processing, analysis and interpretation, and the elements of the systems approach to Molecular Biology.

Module	Syllabus Description						
1	 Molecular Biology Primer (3 hours) Genes, DNAs, RNAs, Proteins, Genomics, Sequencing techniques, Bioinformatics overview and scope Sequence Alignment (6 hours) Global and local sequence alignment-dynamic programming algorithms, edit distance, similarity, Needleman Wunsch Algorithm, Smith Waterman Algorithm 	9					
2	Biological Databases and Data Formats (3 hours) Genomic and Sequence Data Formats, GenBank, EMBL-Bank, and DDBJ, PROSITE, NCBI- Database Searching: BLAST, FASTA Phylogenetics (6 hours) Phylogenetic Tree basics and Construction Methods, UPGMA, Neighbour joining, Parsimonous trees, Additive trees, Bootstrapping						

SYLLABUS

	Combinatorial Pattern Matching (9 hours)	
3	Combinatorial Pattern Matching, Repeat finding, Keyword Trees, Suffix	9
	Trees, Heuristic similarity search algorithms, Approximate Pattern Matching	
	R FOR BIOINFORMATICS	
	Variables, Data types, control flow constructs, String manipulation, Pattern	
	Matching, arrays, lists and hashes, File handling, Programs to handle	
	biological data and parse output files for interpretation, packages for sequence	
	alignment, FASTA, BLAST (Bioconductor, msa, Biostrings etc.)	9
4	Indicative Laboratory/Microproject Tasks	
	Biological Databases, Sequence alignment: BLAST family of programs,	
	FASTA, ClustalW for multiple sequence alignment, Phylogenetics software,	
	Homology Modeling and Model evaluation, Related Programs in R.	

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	e Assignment/ Microproject (Written)		Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B		
• 2 Questions from each	• Each question carries 9 marks.		
module.	• Two questions will be given from each module, out		
• Total of 8 Questions, each	of which 1 question should be answered.	(0	
carrying 3 marks	• Each question can have a maximum of 3 sub	60	
	divisions.		
(8x3 =24marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the Basics of Bioinformatics	K2
CO2	Use various biological databases and apply sequence alignment techniques	К3
CO3	Use molecular phylogenetics to identify evolutionary relationships among various biological species	К3
CO4	Apply the concept of combinatorial pattern matching in bioinformatics	K3
CO5	Use R language and packages to solve bioinformatics problems	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	-	-	-	-	-	-	-	-	2
CO2	3	3	3	-	-	-	-	-	-	-	-	2
CO3	3	3	3	3	-	-	-	-	-	-	-	2
CO4	3	3	3	3	-	-	-	-	-	-	-	2
CO5	3	3	3	3	3	-	-	-	-	-	-	2

Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	An Introduction to Bioinformatics Algorithms,	N. C. Jones and P. A. Pevzner,	MIT Press, 2004	1/e, 2004					
2	Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools	Supratim Choudhuri	Academic Press	1/e, 2014					
3	R Programming for Bioinformatics	Robert Gentleman	CRC Press	1/e, 2009					

	Reference Books				
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Introduction to Bioinformatics	T. K. Attwood and D. J. Parry-Smith,	Pearson Education	1/e, 2003	
2	Analysis of Biological Networks,	B. Junker and F. Schreiber,	Wiley Publishers	1/e, 2007	
3	Heterogeneous Information Networks - Principles & Methodologies	Y. Sun and J. Han, Mining	Morgan & Claypool Publishers	1/e, 2012	
4	Multilayer Social Networks,	M. E. Dickison et al,	Cambridge University Press	1/e, 2016	

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/102/106/102106065/					
2	https://onlinecourses.swayam2.ac.in/cec21_bt04/preview					

BLOCKCHAIN AND CRYPTOCURRENCIES

Course Code	PECST747	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PBCST604	Course Type	Theory

Course Objectives:

- **1.** To provide a comprehensive understanding of blockchain architecture, elements, types (public, private, consortium), and industry applications.
- **2.** To help the learners to assess strengths and weaknesses of various blockchain consensus mechanisms (e.g., Proof of Work, Proof of Stake, Practical Byzantine Fault Tolerance).
- **3.** To enable learners to use blockchain real-world applications in government, healthcare, finance, and supply chain management, identifying implementation opportunities and challenges.

Module No.	Syllabus Description			
1	Blockchain Fundamentals Introduction, Blockchain Definition, Deciphering the Blockchain, Features and challenges of Blockchain, Applications in Blockchain, Decentralisation, Distributed Ledger Technology, Blockchain variants.	7		
2	Cryptography in Blockchain and Consensus Mechanisms Concept of Hashing, Creating a Transaction Hash, Merkle Trees - Importance of Merkle tree, Chaining of Blocks, Building the Network, Accessing the network, Types of Wallets. Need for Consensus, Two Generals' Problem, Byzantine Generals' Problem, Byzantine Fault Tolerance (BFT), Practical Byzantine Fault Tolerance (PBFT)- working, Paxos and Raft Algorithms.	9		

SYLLABUS

3	Cryptocurrencies - Bitcoin and Ethereum Bitcoin: Components, Nodes in Bitcoin network, Transactions and memory pools, Proof of Work-Mining Cryptocurrencies, Hard and Soft Forks, Tracking Bitcoins-Unspent Transaction Outputs. Ethereum: Transition from Bitcoin to Ethereum, Concept of Ethereum World Computer, Ethereum Virtual Machine, Ethereum Network, Transition from PoW to PoS- Working of PoS, Smart Contracts in Ethereum, Decentralised Applications in Ethereum, Tools used in Ethereum.	10
4	Blockchain Ethereum Platform using Solidity and Use Cases in Blockchain :-Solidity Language - Remix IDE, Structure of a Smart Contract Program, Modifiers, Events, Functions, Inheritance, External Libraries, Error Handling.Permissioned Blockchains, Introduction to Hyperledger Foundation, Hyperledger Distributed Ledger frameworks, Hyperledger Fabric.Use Cases in Blockchain - Finance, Education, Government, Healthcare and Supply Chain Management.	10

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the fundamental concepts of Blockchain technology.	K2
CO2	Illustrate the cryptographic building blocks of Blockchain technology and understand the consensus mechanisms.	К2
CO3	Explain the concepts of cryptocurrency bitcoin, mining processes, and wallet management.	К2
CO4	Use the concepts of Ethereum platform and understand the use cases of blockchain technology	К3
CO5	Develop skills in designing and deploying simple applications using Solidity language.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3		3							2
CO5	3	3	3	3	3							2

	Text Books				
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year	
1	Blockchain Technology: Algorithms and Applications	Asharaf S, Sivadas Neelima, Adarsh S, Franklin John	Wiley	1/e, 2023	
2	BlockchainTechnology	Chandramauoli Subrahmaniyan, Asha A George	Universities Press.	1/e ,2020	

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Blockchain Technology - Concepts and Applications.	Kumar Saurabh, Ashutosh Saxena	Wiley	1/e, 2020		
2	Mastering Blockchain	Imran Bashir	Packt Publishing	1/e, 2020		
3	Solidity programming Essentials: A beginner's guide to build smart contracts for Ethereum and blockchain	Ritesh Modi	Packt Publishing	1/e, 2018.		

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://youtube.com/playlist?list=PLrKK422S1aMma8lDA2JJjEUpC2ycuApuC&si=1OXTYDEZ4 A5M8M4Q				
2	https://youtube.com/playlist?list=PLHRLZtgrF2jl8yqucJsMFqh5XpRLTgCl4				
3	https://youtube.com/playlist?list=PL6gx4Cwl9DGBrtymuJUiv9Lq5CAYpN8Gl				
4	https://youtube.com/playlist?list=PLWUCKsxdKl0oksYr6IG_wRsaSUySQC0ck				

INFORMATION RETRIEVAL

Course Code	PECDT745	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To introduce the foundational principles and models of information retrieval, including indexing, query processing, and relevance feedback.
- **2.** To help learners develop the skills to design, implement, and evaluate basic search engines and retrieval systems.
- **3.** To equip learners with the ability to analyze the ethical implications of information retrieval and to introduce them to advanced IR topics such as web search, multimedia retrieval, and the use of machine learning in IR.

Module No.	Syllabus Description	Contact Hours
1	 Overview of Information Retrieval Systems:- History and Evolution of IR, Basic Concepts of Information Retrieval, Differences between Data Retrieval and Information Retrieval, IR Models: Boolean, Vector Space, Probabilistic Models. Indexing and Search: Document Representation and Preprocessing, Tokenization, Stemming, and Lemmatization, Inverted Index and Boolean Queries, Term Frequency and Document Frequency. Relevance Feedback and Query Expansion: Query Reformation Techniques, User Feedback in IR Systems, Pseudo Relevance Feedback. 	9

	Retrieval Models and Evaluation:-	
	Retrieval Models: Vector Space Model (VSM), Probabilistic Retrieval	
	Model, Language Models for IR, Latent Semantic Indexing (LSI), Topic	
	Models (LDA)	
2	Evaluation of Information Retrieval Systems: Precision, Recall, and F-	9
-	Measure, Receiver Operating Characteristic (ROC) Curves, Mean Average	
	Precision (MAP), Discounted Cumulative Gain (DCG), Test Collections and	
	Benchmarks (TREC).	
	Text Similarity and Ranking: Cosine Similarity, TF-IDF Weighting,	
	BM25 Ranking Algorithm	
	Web Search and Information Retrieval :-	
	Web Search Fundamentals, Web Crawling and Indexing, Link Analysis	
	Algorithms: PageRank and HITS, Search Engine Architecture and	
	Components, Web Content Mining and Structure Mining	
3	Search Engine Optimization (SEO):Concepts of SEO and Ranking Factors,	9
	On-Page and Off-Page Optimization, User Behavior Modeling and	
	Personalized Search.	
	Distributed and Scalable Search: Distributed Indexing and Search	
	Architectures, Map Reduce for Large Scale Search Engines, Parallel Query	
	Processing and Web-Scale IR	
	Advanced Topics in Information Retrieval:-	
	Multimedia and Cross-Language Information Retrieval: Image and Video	
	Retrieval Techniques, Content-Based Image Retrieval (CBIR), Cross-	
	Language Information Retrieval (CLIR) and Challenges, Natural Language	
	Processing (NLP) in IR	
	Social Media and Sentiment Analysis: Social Media Mining and Opinion	
4	Retrieval, Sentiment Analysis and Opinion Mining Techniques,	9
	Collaborative Filtering and Recommendation Systems	
	Ethical Issues and Emerging Trends: Privacy and Bias in Information	
	Retrieval, Ethics of Search Engines and IR Systems, AI in Information	
	Retrieval: Deep Learning and Neural IR Models, Future Directions in IR	
	Research	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation (Evaluate and Analyse): 20 marks

Sample Questions at Evaluate Level

- 1. Evaluate the effectiveness of the Vector Space Model (VSM) compared to the Probabilistic Retrieval Model in handling queries with ambiguous terms. Which model provides more accurate results, and under what conditions?
- 2. Evaluate the effectiveness of Mean Average Precision (MAP) compared to Discounted Cumulative Gain (DCG) in assessing the performance of ranked retrieval systems. Which metric better reflects the user experience when interacting with search results, and why?

Sample Questions at Analyze Level

- 1. Evaluate the impact of different design choices in the query processor and ranking components of a search engine on the relevance and ranking of search results. How do these choices influence the user experience?
- 2. Analyze how the application of web content mining and structure mining techniques influences the ranking of search results. What are the trade-offs between relevance and computational efficiency?

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
module.	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x9 = 36 marks)	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the fundamental concepts of Information Retrieval, indexing and searching	K2
CO2	Evaluate the effectiveness of IR systems using standard metrics.	K5
CO3	Examine Web Search and Information Retrieval Techniques	K4
CO4	Explore advanced topics in information retrieval including multimedia retrieval, sentiment analysis, and ethical issues in IR.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3			3	3						3
CO2	3	3		3	3			3				3
CO3	3	3	3	3	3				3			3
CO4	3	3		3		3		3			3	3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to Information Retrieval	C. Manning, P. Raghavan, and H. Schütze,	Cambridge University Press	1/e, 2008			
2	Modern Information Retrieval: The Concepts and Technology behind Search,	Ricardo Baeza-Yates and Berthier Ribeiro-Neto	ACM Press Books	2/e, 2011			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Information Retrieval: Implementing and Evaluating Search Engines	Stefan Büttcher, Charles L. A. Clarke, Gordon V. Cormack C	MIT Press,	1/e, 2016.			
2	Search Engines: Information Retrieval in Practice	Bruce Croft, Donald Metzler, and Trevor Strohman	Addison-Wesley	1/e, 2009			

Video Links (NPTEL, SWAYAM)				
Module No.	Link ID			
1	https://nptel.ac.in/courses/106/105/106105158			
2	https://nptel.ac.in/courses/106/105/106105158/			
3	https://swayam.gov.in/nd1_noc19_cs61/preview			
4	https://nptel.ac.in/courses/106/106/106106139/			
5	https://nptel.ac.in/courses/106/106/106106142/			

ADVANCED DATABASE SYSTEMS

Course Code	PECDT795	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3-0-0-0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To impart the concepts of query processing, optimization and concurrency control in relational and distributed databases.
- **2.** To provide detailed understanding of non-relational databases and use it in appropriate scenarios and also to introduce students to Graph databases and GIS.

Module No.	Syllabus Description	Contact Hours
1	 Query Processing and Optimization: Measures of query cost, Algorithms for Selection with cost analysis, Algorithms for Join with cost analysis, Algorithms for Project and Set operations, Evaluation of expressions, Heuristics in Query Optimization: Optimization of Relational Algebra expressions Physical Database Design and Tuning: Introduction to Physical Database Design: Factors influencing Physical Database Design, Overview of Database Tuning: Tuning the Conceptual Schema, Tuning Queries and Views-Impact of Concurrency. 	9
2	Distributed Databases: Distributed Database Concepts: Architecture, Distributed Data Storage: Data fragmentation, Replication and allocation techniques for distributed data base design, Types of Distributed Database	9

	Systems, Query Processing and Decomposition: Query Processing Objectives,	
	Characterization of Query Processors, Layers of Query Processing, Query	
	Decomposition, Localization of Distributed Data, Concurrency Control and	
	Recovery in Distributed Database Systems.	
	XML and Non-Relational Databases: XML: Introduction to Semi	
	Structured Data and XML Databases, XML Data Model, XML documents,	
	DTD and XML Schema, XML Presentation, XPath Queries, XQuery	
3	NOSQL Databases: Introduction, Comparison of NoSQL and relational	9
·	databases, database Sharding, CAP Theorem, Overview of MongoDB: Mongo	-
	DB data model, CRUD Operations, Indexing, Application integration,	
	Replication, Sharding, Deployment. Cassandra: Data Model, CRUD	
	operations.	
	ch company	
	Graph databases: Introduction, Data Modelling with Graphs: Building a	
	Graph Database application, Data Modeling, Predictive Analysis with Graph	
	Theory: Depth and Breadth First Search, Path-Finding with Dijkstra's	
4	Algorithm, Graph Theory and Predictive Modeling.	9
	Geographic Information Systems (GIS): Components, Characteristics, Data	
	Models for GIS, GIS Standards and Operations.	
	noters for one, one standards and operations.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Sample Questions at Evaluate Level

 Critically evaluate the significance of using different query cost metrics (e.g., I/O cost, CPU cost) in optimizing complex queries. 2. Assess the impact of using a sort-merge join algorithm versus a hash join algorithm in a system with limited memory resources. Which algorithm would you recommend, and under what conditions might your recommendation change?

Sample Questions at Evaluate Level

- 1. Analyze how the structure of a graph database differs from a relational database in terms of data representation and query efficiency.
- 2. Analyze the key considerations when transitioning from a relational database application to a graph database application. What architectural and performance factors should be taken into account, and how do they influence the design of the application?

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks) 	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x9 = 36 marks)	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Critique various measures for query processing and optimization, and apply techniques to tune database performance.	K5
CO2	Explain the architecture and fundamental concepts of distributed databases.	K2
CO3	Utilize semi-structured data, XML, and XML queries for effective data management	K3
CO4	Utilize NoSQL database systems to manage and manipulate data in real-time applications	K3
CO5	Examine graph database concepts and geographic information systems as tools for data modeling	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3		3							3
CO4	3	3	3		3							3
CO5	3	3	3		3							3

		Text Books			
Sl. No	Title of the Book	Title of the Book Name of the Author/s		Edition and Year	
1	Fundamentals of Database Systems	Ramez Elmasri and Shamkant B. Navathe	Pearson	7/e, 2019	
2	Database System Concepts	A. Silberschatz, H. Korth and S. Sudarshan	McGraw-Hill	7/e, 2021	
3	Database Management Systems	R. Ramakrishnan, J. Gehrke	McGraw Hill	3/e, 2018	
4	Graph Databases	Ian Robinson, Jim Webber & Emil Eifrem	O'Reilly	2/e, 2015	
5	Database Systems: Practical approach to design, implementation, and management	T. M. Connolly and C. Begg	Pearson	6/e, 2019	

	Reference Books											
Sl. No	Title of the Book Name of the Author		Title of the Book Name of the Auth		Title of the Book Name of the Auth		Title of the Book Name of the Author		Title of the Book Name of the Autho		Name of the Publisher	Edition and Year
1	Principles of Database Management: Practical Guide to Storing, Managing and Analyzing Big and Small Data	W. Lemahieu, S. vanden Broucke and B. Baesens	Cambridge University Press	1/e, 2018								
2	Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems	M. Kleppmann	O'Reilly	1e, 2017								
3	Database Systems: The Complete Book	Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom	Prentice Hall	2/e, 2009								
4	Next generation databases: NoSQL, newSQL, and big data.	Guy Harrison	Apress	1/e, 2015								
5	Foundations of Multidimensional and Metric Data Structures	Hanan Samet	Morgan Kaufmann	1/e,2006								
8	Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems	M. Kleppmann	O'Reilly	1/e, 2017								

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	CAP Theorem https://nptel.ac.in/courses/106104189				
2	Advanced database Queries https://archive.nptel.ac.in/courses/106/104/106104021				
3	Database design https://archive.nptel.ac.in/courses/106106093/				
4	Introduction to modern application development https://archive.nptel.ac.in/courses/106/106/106106156				

GRAPH DATABASES AND ANALYSIS

Course Code	PECDT751	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide an insight into graph databases, and to study in detail the technology in designing graph databases.
- **2.** To give the student an understanding of data modelling with graphs, to learn different graph algorithms and to do predictive analysis of graphs in real world applications.

Module No.	Syllabus Description	Contact Hours
1	Introduction to the Graph Data Model : Graphs as the future of data, The relevance of data relationships, High-level view of Graph Space, The Power of Graph Databases, Options for Storing Connected Data: Relational Databases Limitations, NoSQL Databases,	9
2	 Graph Databases, Defining Graph Analytics and Graph Data Science. Data Modelling with Graph: Models and Goals, The Property Graph Model, Querying Graphs: An Introduction to Cypher, Other Cypher Clauses, Comparison of Relational and Graph Modelling, Cross Domain Models, 	9
	Common Modelling Pitfalls. Building a Graph Database Application: Data Modelling, Application Architecture, Redundancy	
3	Graph Algorithms: Graph Algorithms in Neo4j, Graph Algorithm Concepts, The Neo4j Graph	9

	Algorithms Library, Pathfinding and Graph Search Algorithms, Centrality Algorithms, Community Detection Algorithms, Graph Algorithms in Practice	
	Predictive Analysis with Graph Theory in Real World:	
	Real-World Examples, Looking at Graphs in the Health Industry. Graph	
4	Database Internals: Native Graph Processing, Native Graph Storage,	10
-	Programmatic APIs, Non-functional Characteristics	10
	Depth and Breadth-First Search, Path-Finding with Dijkstra's Algorithm,	
	The A* Algorithm, Graph Theory and Predictive Modelling	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each	• Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the key concepts of NoSQL and Graph databases by understanding the new database models, and how these databases fit into the overall ecosystem.	K2
CO2	Apply appropriate techniques to design a property graph data model and build graph database applications for entity-relationship, and modelling objects.	К3
СО3	Apply appropriate algorithms in Neo4j graph databases, and model solutions for computing problems.	К3
CO4	Use appropriate predictive analysis with graph theory for processing, storing, searching and modelling in real world applications.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Graph Databases	Ian Robinson, Jim Webber, Emil Eifrem.	O'Reilly	2/e, 2015			
2	Graph Data Science for dummies: Predicting Changing Demand Patterns in the New Digital Economy	Pierson, Lillian.	John Wiley & Sons	3/e, 2021			
3	A Comprehensive Guide to Graph Algorithms	Mark Needham, Amy E. Hodler,	Neo4j.com	1/e,2020			
4	Graph Databases for Beginners	Bryce Merkl Sasaki, Joy Chao & Rachel Howard	Neo4j.com	1/e, 2020			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Big data for dummies.	Hurwitz, Judith S., Alan Nugent, Fern Halper, and Marcia Kaufman.	John Wiley & Sons	1/e, 2013			

INTRODUCTION TO INTERNET OF THINGS

Course Code	PECDT752	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To teach the fundamentals of IoT architecture, including its origins, impact, and the convergence with IT.
- **2.** To enable the learner to explore the components of IoT networks such as smart objects, sensors, actuators, and communication technologies, with a focus on IP optimization and application protocols.

SYLLABUS

Module No.	Syllabus Description	Contact Hours
1	IoT Architecture- What is IoT, Genesis of IoT, IoT and Digitization, IoT Impact, Convergence of IT and IoT, IoT Challenges, IoT Network Architecture and Design, Drivers Behind New Network Architectures, Comparing IoT Architectures, A Simplified IoT Architecture, The Core IoT Functional Stack, IoT Data Management and Compute Stack.	8
2	 Engineering IoT Networks-Smart Objects: The "Things" in IoT, Sensors, Actuators, and Smart Objects, Sensor Networks, Connecting Smart Objects, Communications Criteria, IoT Access Technologies. IoT Network Layer: IP as the IoT Network Layer, The Business Case for IP, The need for Optimization, Optimizing IP for IoT, 	14

3	IoT protocols- Application Protocols for IoT(XMPP, MQTT, CoAP, SOAP, HTTP only), Transport Layer, IoT Application Transport Methods. Data Analytics for IoT: Data and Analytics for IoT, An Introduction to Data Analytics for IoT, Machine Learning, Big Data Analytics Tools and Technology.	12
4	Developing IoT Systems: IoT Logical Design using Python, IoT Physical Devices and Endpoints - Raspberry Pi interfaces, Programming Raspberry Pi using Python, WAMP. Developing Tools: Arduino, Apache NetBeans, Kinoma, IBM Watson IoT, Node-RED Case study: IoT in Agriculture, IoT in Smart city.	10

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1	Internal Examination- 2	Total
	wheroproject	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 = 24 marks) Each question carries 9 marks. Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 	Part A	Part B	Total
(4x9 = 36 marks)	module.Total of 8 Questions, each	 Two questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome				
CO1	Describe the fundamentals of IoT architecture, including its genesis and impact	K2			
CO2	Use different IoT architectures, the core functional stack, and the impact of IoT on digitization and industry while identifying key challenges in IoT network design.	K3			
CO3	Experiment with smart objects, sensors, actuators, and various IoT access technologies, and assess how IP optimization enhances IoT networking protocols and data communication.	K3			
CO4	Implement IoT-specific application and transport layer protocols (e.g., MQTT, CoAP) and apply data analytics and machine learning techniques to process IoT-generated data using big data tools.	K3			
CO5	Develop IoT systems using Raspberry Pi, Arduino, and other platforms, programming in Python, and utilizing tools like Node-RED and IBM Watson IoT, while exploring real-world IoT applications in agriculture and smart cities.	K3			

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3	3							3

	Text Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	IoT Fundamentals Networking Technologies, Protocols, and use cases for the Internet of Things	David Hames, Gonzalo Salguerio, Patrick Grossetete, Robert Barton, Jerome Henry	Pearson Education	1/e, 2016			
2	Internet of Things: A hands-on approach	Arshadeep Bahga, Vijay Madisetti	University Press	1/e, 2014			

	Reference Books					
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Internet of Things: Architecture and Design Principles	Rajkamal	McGraw Hill	1/e,2017		
2	Architecting the Internet of Things	Dieter Uckelmann, Mark Harrison, Florian Michahelles	Springer Science & Business Media,	1/e, 2011		
3	Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems	Ovidiu Vermesan, Peter Friess,	River Publishers	1/e, 2013		
4	Programming Arduino: Getting Started with Sketches	Simon Monk	McGraw Hill	1/e, 2016		

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1,2,3	https://onlinecourses.nptel.ac.in/noc22_cs53/preview						

MOBILE APPLICATIONS

Course Code	PECDT753	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	0	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To impart practical knowledge in Mobile application development using Flutter and Dart, UI/UX Design Skills
- 2. To present the industry practices and deployment such as app security, testing.

Module	Syllabus Description	Contact Hours
No.	Syllabus Description Introduction to Mobile Application Development: Overview and Key Concepts Overview of Mobile Platforms: iOS and Android-Introduction to Cross Platform Development with Flutter: Key Benefits -Flutter vs. Other Cross-Platform Frameworks Setting Up the Flutter Development Environment: Installing Flutter SDK and Tools-Building and Running the "Hello World" App-Brief Introduction to Git (Cloning and Basic Commands) Mobile App Architectures: Overview of MVC and MVVM-Brief Introduction to the BLoC Pattern in Flutter	Hours 9
	Basics of Dart Programming Language: Syntax and Data Types- Introduction to Asynchronous Programming	

	User Interface Design and User Experience: Principles of Mobile UI/UX	
	Design-Overview -Importance of Usability, Accessibility, and User-Centered	
	Design	
	Designing Responsive UIs with Flutter Using Flutter Widgets: Stateless	
	Widget and Stateful Widget-Practical Examples and Use Cases	
	Layouts in Flutter: Deep Dive into Layout Widgets: Container, Column,	
	Row, Stack-Aligning and Positioning Widgets Effectively	
2	Navigation and Routing in Flutter: Implementing Basic Navigation:	9
	Navigator and Routes-Managing Multiple Screens and Passing Data Between	
	Them	
	Customizing UI with Themes and Styles: Introduction to Flutter's Theming	
	Capabilities-Creating Custom Themes and Applying Styles	
	Introduction to Material Design and Cupertino Widgets: Overview of	
	Material Design Principles and Components-Using Cupertino Widgets for iOS	
	Design in Flutter	
	Advanced Flutter Development:	
	State Management in Flutter: Overview of State Management Concepts-	
	State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod:	
	State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod: Advanced State Management Patterns-Deep Dive into the BLoC Pattern:	
	State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod:	
	State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod: Advanced State Management Patterns-Deep Dive into the BLoC Pattern:	
3	State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod: Advanced State Management Patterns-Deep Dive into the BLoC Pattern: Managing Complex State	0
3	 State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod: Advanced State Management Patterns-Deep Dive into the BLoC Pattern: Managing Complex State Networking in Flutter: Making HTTP Requests: GET, POST, PUT, 	9
3	 State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod: Advanced State Management Patterns-Deep Dive into the BLoC Pattern: Managing Complex State Networking in Flutter: Making HTTP Requests: GET, POST, PUT, DELETE, JSON Parsing: Working with APIs, Integrating RESTful APIs in Flutter Apps 	9
3	 State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod: Advanced State Management Patterns-Deep Dive into the BLoC Pattern: Managing Complex State Networking in Flutter: Making HTTP Requests: GET, POST, PUT, DELETE, JSON Parsing: Working with APIs, Integrating RESTful APIs in Flutter Apps Data Persistence: Introduction to SQLite: Local Database Storage-Using 	9
3	 State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod: Advanced State Management Patterns-Deep Dive into the BLoC Pattern: Managing Complex State Networking in Flutter: Making HTTP Requests: GET, POST, PUT, DELETE, JSON Parsing: Working with APIs, Integrating RESTful APIs in Flutter Apps 	9
3	 State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod: Advanced State Management Patterns-Deep Dive into the BLoC Pattern: Managing Complex State Networking in Flutter: Making HTTP Requests: GET, POST, PUT, DELETE, JSON Parsing: Working with APIs, Integrating RESTful APIs in Flutter Apps Data Persistence: Introduction to SQLite: Local Database Storage-Using 	9
3	 State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod: Advanced State Management Patterns-Deep Dive into the BLoC Pattern: Managing Complex State Networking in Flutter: Making HTTP Requests: GET, POST, PUT, DELETE, JSON Parsing: Working with APIs, Integrating RESTful APIs in Flutter Apps Data Persistence: Introduction to SQLite: Local Database Storage-Using Shared Preferences for Simple Key-Value Storage-Overview of Hive 	9
3	 State Management in Flutter: Overview of State Management Concepts- Introduction to Provider: Basic State Management-Exploring Riverpod: Advanced State Management Patterns-Deep Dive into the BLoC Pattern: Managing Complex State Networking in Flutter: Making HTTP Requests: GET, POST, PUT, DELETE, JSON Parsing: Working with APIs, Integrating RESTful APIs in Flutter Apps Data Persistence: Introduction to SQLite: Local Database Storage-Using Shared Preferences for Simple Key-Value Storage-Overview of Hive Asynchronous Programming with Dart: Futures, async/await, and Streams 	9

	Industry Practices and App Deployment:	
	Advanced UI Components and Animations:Building Complex UI Components in Flutter-Implementing Animations	
	App Security Best Practices: Securing Mobile Applications: Common Threats and Mitigations-Implementing Secure Authentication and Data Storage	
4	Testing and Debugging Flutter Applications: Introduction to Unit Testing, Widget Testing, and Integration Testing-Debugging Techniques and Tools in Flutter	9
	Continuous Integration/Continuous Deployment (CI/CD) with Flutter- Publishing Apps to Google Play Store and Apple App Store-Industry Trends and Future of Mobile Development with Flutter.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each carrying 3 marks	• Two questions will be given from each module, out of which 1 question should be answered.	60
	• Each question can have a maximum of 3 subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the basics of mobile application development and different mobile platforms and the environment setup.	К2
CO2	Apply principles of effective mobile UI/UX design, develop responsive user interfaces using Flutter widgets.	К3
СОЗ	Experiment effectively with state in Flutter applications. networking and data persistence in Flutter apps.	К3
CO4	Apply security best practices in mobile app development and debug Flutter applications effectively.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Flutter Cookbook	Simone Alessandria	Packt	2/e, 2023					
2	Flutter for Beginners	Alessandro Biessek	Packt	1/e, 2019					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Flutter in Action	Eric Windmill	Manning	1/e, 2019					
2	Flutter and Dart: Up and Running	Deepti Chopra, Roopal Khurana	BPB	1/e, 2023					

Video Links (NPTEL, SWAYAM)							
No.	No. Link ID						
1	https://www.youtube.com/watch?v=VPvVD8t02U8						
2	Getting started with Flutter Development (coursera.org)						

RESPONSIBLE ARTIFICIAL INTELLIGENCE

Course Code	PECST752	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To impart the ideas of fairness, accountability, bias, and privacy as fundamental aspects of responsible AI.
- **2.** To teach the principles of interpretability techniques including simplification, visualization, intrinsic interpretable methods, and post hoc interpretability for AI models.
- **3.** To give the learner understanding of the ethical principles guiding AI development, along with privacy concerns and security challenges associated with AI deployment.

Module No.	Syllabus Description	Contact Hours
1	Foundations of Responsible AI :- Introduction to Responsible AI- Overview of AI and its societal impact; Fairness and Bias - Sources of Biases, Exploratory data analysis, limitation of a dataset, Preprocessing, inprocessing and postprocessing to remove bias.	7
2	Interpretability and explainability:- Interpretability - Interpretability through simplification and visualization, Intrinsic interpretable methods, Post Hoc interpretability, Explainability through causality, Model agnostic Interpretation. Interpretability Tools - SHAP (SHapley Additive exPlanation), LIME(Local Interpretable Model-agnostic Explanations)	10
3	Ethics, Privacy and Security :- Ethics and Accountability -Auditing AI models, fairness assessment,	10

	Principles for ethical practices.	
	Privacy preservation - Attack models, Privacy-preserving Learning,	
	Differential privacy- Working, The Laplace Mechanism, Introduction to	
	Federated learning.	
	Security - Security in AI Systems, Strategies for securing AI systems and	
	protecting against adversarial attacks	
	Future of Responsible AI and Case Studies : -	
	Future of Responsible AI - Emerging trends and technologies in AI ethics	
4	and responsibility.	9
	Case Studies - Recommendation systems, Medical diagnosis, Computer	
	Vision, Natural Language Processing.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total	
5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Identify and describe key aspects of responsible AI such as fairness, accountability, bias, and privacy.	K2
CO2	Describe AI models for fairness and ethical integrity.	K2
CO3	Understand interpretability techniques such as simplification, visualization, intrinsic interpretable methods, and post hoc interpretability.	K2
CO4	Comprehend the ethical principles, privacy concerns, and security challenges involved in AI development and deployment.	К3
CO5	Understand responsible AI solutions for practical applications, balancing ethical considerations with model performance.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way	Virginia Dignum	Springer Nature	1/e, 2019						
2	Interpretable Machine Learning	Christoph Molnar	Lulu	1/e, 2020						

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	ResponsibleAI Implementing Ethical and Unbiased Algorithms	Sray Agarwal, Shashin Mishra	Springer Nature	1/e, 2021				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://youtu.be/3-xhMXeYIcg?si=x8PXrnk0TabaWxQV					
2	https://youtu.be/sURHNhBMnFo?si=Uj0iellJs3oLOmDL [SHAP and LIME] https://c3.ai/glossary/data-science/lime-local-interpretable-model-agnostic-explanations/ https://shap.readthedocs.io/en/latest/ https://www.kaggle.com/code/bextuychiev/model-explainability-with-shap-only-guide-u-need					
3	https://www.youtube.com/live/DA7ldX6OIG4?si=Dk4nW1R1zi_UMG_4					
4	https://youtu.be/XlYhKwRLerc?si=IeU7C0BLhwn9Pvmi Case Studies https://www.kaggle.com/code/teesoong/explainable-ai-on-a-nlp-lstm-model-with-lime https://www.kaggle.com/code/victorcampelo/using-lime-to-explaining-the-preditions-from-ml					

DIGITAL FORENSICS

(Common with CS/CM/CA/CD/CR/AI/AM/AD)

Course Code	PECST754	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To impart the fundamental knowledge on incident management and reporting.
- **2.** To provide a good understanding on devices, operating systems, network and mobile forensics.

Module No.	Syllabus Description			
1	Introduction to Digital Forensics - Principles in Digital Forensics; Stages in Digital Forensics Investigation- Forensics Imaging & Cloning, Concept of Chain of Custody, Digital Evidence Handling at Crime Scene, Collection/Acquisition and Preservation of Digital Evidence, Processing & Analysis, Compilation of Findings & Reporting; Expansion of Stages in Digital Investigation. Types of Storage Media - Hard Disk Drives (HDD), Solid State Drives (SSD), USB Flash Drives, Optical Discs, Memory Cards, Cloud Storage, Drive Geometry, Cylinders, Heads, and Sectors, Logical Block Addressing (LBA); Expansion of Types of Storage Medium. Overview of File Systems - Introduction to File Systems, File Systems in Digital Forensics, FAT (File Allocation Table), Structure and Characteristics : FAT12, FAT16, FAT32, NTFS (New Technology File System), Structure and Characteristics, Master File Table (MFT), EXT (Extended File System), EXT2, EXT3, EXT4, Journaling in EXT3 and EXT4, HFS (Hierarchical File	10		

	System), HFS and HFS+ Structure and Characteristics, Metadata and	
	Attributes	
	Tools suggested : Hex Viewer, FTK Imager, OS Forensics	
	Windows Forensics - OS Artefacts, Registry Analysis, Analysis of USB	
	Connections, Event Logs, Applications, Slack Space, Overwritten Files, Data	
	Recovery Techniques, Volatile and Non-Volatile Data, Hibernation file	
	analysis, Pagefile analysis, prefetch files, thumbnails, Timestamps, File	
2	Signatures, File System Analysis Tools, Techniques for Recovering Deleted	9
2	Files, File Carving; Memory Forensics - RAM dump and analysis; Linux	,
	and MAC Forensics; Anti Forensics Methods - Steganography, Encryption,	
	Alternate Data Streams.	
	Tools suggested : Hex Viewer, FTK Imager, Autopsy, RegRipper, Volatility,	
	Dumpit	
	Mobile Forensics - Introduction to Mobile Forensics, Mobile Forensics	
	Fundamentals, Understanding Mobile Device Storage, Android, iOS,	
	Windows OS Artifacts, ADB (Android Debug Bridge), APK Files,	
	Techniques for Acquiring Data from Mobile Devices, Rooting, Jailbreaking.	
	Analysis of Application Files - Social Media Files, Understanding and	
3	Analyzing APK Files, Messages, Malware Analysis, Cloud Data in Mobile	9
	Forensics, Analyzing Backups and Cloud Data, Advanced Data Recovery	
	Techniques (Bypassing Encryption, Password Cracking), Challenges in	
	Mobile Forensics.	
	Tools suggested : MobileCheck, BlueStacks(Android Emulator), SQLite	
	Database viewer	
	Network Forensics - Introduction to Network Forensics, Overview of	
	Network Architectures and Protocols, Capturing and Analyzing Network	
	Traffic using Wireshark/Tcpdump, Log Analysis, Email and Web Forensics,	
	Email Header Analysis; Endpoint Security systems - Intrusion Detection	
4	Systems, Firewall, Router Forensics, NAS, Proxy, VPN; Public Key	8
	Infrastructure Systems; Digital Signature - Concepts of Public Key and	
	Private Key, Certification Authorities and Their Role, Creation and	
	Authentication of Digital Signature.	
	Tools Suggested : Wireshark , Apache Log Viewer	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	Total of 8 Questions, each of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Perform forensics analysis of hard disk, Network, and mobile phones.	К3
CO2	Experiment with the network traffic dump.	К3
CO3	Examine the analyse logs of the systems and identify the anomalies.	К3
CO4	Plan an onsite triage in case of an incident.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3		3							2
CO3	3	3	3		3							2
CO4	3	3	3		3							2

	Reference Books							
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year				
1	Digital Forensics and Incident Response	Gerard Johansen	Packt	2/e, 2020				
2	Guide to Computer Forensics and Investigations	Bill Nelson, Amelia Phillips, Christopher Steuart	Cengage	6/e, 2020				
3	Practical Mobile Forensics	Rohit Tamma, Oleg Skulkin , Heather Mahalik, Satish Bommisetty	Packt	4/e, 2020				
4	Mobile Forensics - Advanced Investigative Strategies	Oleg Afonin, Vladimir Katalov	Packt	1/e, 2016				
5	Network Forensics : Tracking Hackers Through Cyberspace	Sherri Davidoff, Jonathan Ham	Pearson	1/e, 2013				
6	File system forensic analysis	Brian Carrier	Addison-Wesley	1/e, 2005				
7	Windows Forensics: The Field Guide for Corporate Computer Investigations		Wiley	1/e, 2006				
8	Android Forensics: Investigation, Analysis and Mobile Security for Google Android	Andrew Hoog	Syngress	1/e, 2011				

	Video Links (NPTEL, SWAYAM)					
No.	No. Link ID					
1	1 https://onlinecourses.swayam2.ac.in/cec20_lb06/preview					
2	2 https://www.swgde.org/documents/published-by-committee/quality-standards/					
3	https://csrc.nist.gov/pubs/sp/800/101/r1/final					

HIGH PERFORMANCE COMPUTING

(Common to CS/CR/CM/CD/CA/AM/AD)

Course Code	PECST757	CIE Marks	40
Teaching Hours/Week	3:0:0:0	ESE Marks	60
(L: T:P: R)			
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Gain an understanding of the modern processor architectures.
- 2. To Give an introduction to parallel programming using OpenMP and MPI.

Module	Syllabus Description	Contact
No.		Hours
1	Modern processors: Stored-program computer architecture- <i>General-</i> <i>purpose cache-based microprocessor architecture</i> - Performance metrics and benchmarks -Moore's Law - Pipelining - Super scalarity - SIMD - <i>Memory hierarchies</i> - Cache, Cache mapping, Prefetch, Multicore processors - Multithreaded processors - <i>Vector processors</i> - Design principles - Maximum performance estimates - Programming for vector architectures.	9
2	 Parallel computers - Taxonomy of parallel computing paradigms - Shared-memory computers - Cache coherence - UMA, ccNUMA, Distributed-memory computers - Hierarchical (hybrid) systems - Networks Basic performance characteristics of networks, Buses, Switched and fat- tree networks - Mesh networks - Hybrids. 	9
3	Shared-memory parallel programming with OpenMP:- Short introduction to OpenMP - Parallel execution - Data scoping - OpenMP worksharing for loops - Synchronization, Reductions, Loop scheduling, Tasking,Miscellaneous, Case study: OpenMP-parallel Jacobi algorithm	9

	Distributed-memory parallel programming with MPI:-	
	Message passing - A short introduction to MPI, A simple example,	
4	Messages and point-to-point communication, Collective communication,	0
4	Nonblocking point-to-point communication, Virtual topologies. Example-	9
	MPI parallelization of a Jacobi solver - MPI implementation - Performance	
	properties.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1	Internal Examination- 2	Total
		(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	60
module.	• Two questions will be given from each	
• Total of 8 Questions, each	module, out of which 1 question should be	
carrying 3 marks	answered.	
	• Each question can have a maximum of 3	
(8x3 =24 marks)	subdivisions.	
	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Describe parallel computing architectures supported by modern	K2
	processors.	
CO2	Classify parallel computing paradigms and network topologies.	К2
CO3	Implement shared-memory parallel programming with OpenMP.	К3
CO4	Design and implement parallel algorithms using distributed-	K3
	memory parallel programming with MPI	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2										3
CO2	3	2										3
CO3	3	3	3	2								3
CO4	3	3	3	2								3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Introduction to High Performance Computing for Scientists and Engineers	Georg Hager Gerhard Wellein	CRC Press	1/e, 2011			
2	High Performance Computing: Modern Systems and Practices	Thomas Sterling, Maciej Brodowicz, Matthew Anderson	Morgan Kaufmann	1/e, 2017			

	Reference Books							
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Parallel and High-Performance Computing	Robert Robey Yuliana Zamora	Manning Publications	1/e, 2021				
2	High-Performance Computing	Charles Severance Kevin Dowd	O'Reilly Media	2/e, 1998				
3	Computer Architecture And Parallel Processing	Kai Hwang Faye Alaye Briggs	McGraw-Hill	1/e, 1984				
4	Computer Architecture: A Quantitative Approach	John L. Hennessy David A. Patterson	Morgan Kaufman	6/e, 2017				

	Video Links (NPTEL, SWAYAM)						
Module No.	Link ID						
1	https://nptel.ac.in/courses/106108055						
2	https://nptel.ac.in/courses/106108055						
3	https://nptel.ac.in/courses/106108055						
4	https://nptel.ac.in/courses/128106014						

PARALLEL ALGORITHMS

(Common to CS/CM/CD/AM)

Course Code	PECST759	CIE Marks	40	
Teaching Hours/Week	3:0:0:0	ESE Marks	60	
(L: T:P: R)	2101010			
Credits	3	Exam Hours	2 Hrs. 30 Min.	
Prerequisites (if any)	PCCST303	Course Type	Theory	
i rerequisites (il any)	PCCST502	Course Type	Theory	

Course Objectives:

- 1. To develop a comprehensive understanding of parallel computing principles and architectures by studying various types of parallelism, such as data and task parallelism, and analyzing different computing architectures.
- 2. To implement and evaluate parallel algorithms for fundamental operations, such as matrix addition and multiplication, using performance metrics like speedup and scalability, while gaining hands-on experience with parallel programming models and tools.

Module No.	Syllabus Description					
1	Introduction to Parallel Computing - Overview of parallel computing and its importance, Types of parallelism: data parallelism, task parallelism, Parallel computing architectures: SIMD, MIMD, shared memory, distributed memory. Parallel Programming Models - Parallel programming models: Parallel Random Access Machine (PRAM), bulk synchronous parallel (BSP), LogP, Shared memory vs. distributed memory models; Performance Metrics - Performance metrics for parallel algorithms: speedup, efficiency, scalability, Amdahl's Law and Gustafson's Law.	9				
2	Parallel Algorithms for Basic Operations - Parallel algorithms for matrix addition, matrix multiplication, and reduction, Parallel prefix sum (Parallel scan) algorithms. Case Studies of Parallel Addition, Multiplication, Reduction, and Prefix Sum in Modern Computing Systems; Parallel Sorting Algorithms -	9				

	Parallel sorting algorithms: parallel merge sort, parallel quicksort, bitonic	
	merge sort, Comparison of parallel sorting techniques.	
	Parallel Graph Algorithms - Parallel algorithms for graph traversal: BFS, DFS,	
3	Parallel algorithms for minimum spanning tree (MST) and shortest path.	9
5	Parallel Search Algorithms - Parallel search algorithms: parallel binary search,	9
	parallel search trees, Applications and analysis.	
	Parallel Programming with OpenMP - Introduction to OpenMP, Parallel	
	programming constructs in OpenMP, Performance tuning and optimization	
	Parallel Programming with MPI - Introduction to MPI, Message passing	
4	model and MPI basics, Advanced MPI features and applications	9
	Parallel Numerical Algorithms - Solving linear systems: parallel Gaussian	
	elimination, parallel LU decomposition, Parallel algorithms for eigenvalue	
	problems, Applications and analysis.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand and articulate the fundamental principles and architectures of parallel computing.	K2
CO2	Implement and evaluate parallel algorithms for basic operations such as sorting and searching.	К3
СО3	Develop and analyze parallel algorithms for complex problems, including graph and numerical algorithms.	К3
CO4	Apply parallel programming techniques to real-world problems and assess the efficiency and performance of parallel solutions.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3	3	2								3
CO2	3	3	3	2								3
CO3	3	3	3	3								3
CO4	3	3	3	3			2	2				3

	Т	ext Books			
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year 2/e, 2003	
1	Introduction to Parallel Computing	Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar	Addison-Wesley		
2	Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers	Barry Wilkinson and Michael Allen	Pearson India	2/e, 2006	
3	An Introduction to Parallel Algorithms	Joseph Jaja	Addison-Wesley Professional	1/e, 1992	
4	Parallel Algorithms	Henri Casanova, Arnaud Legrand, Yves Robert	Chapman and Hall/CRC	1/e, 2020	
5	Parallel Scientific Computing in C++ and MPI	George Em Karniadakis and Robert M. Kirby II	Cambridge University Press	1/e, 2003	

Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Parallel Programming for Multicore and Cluster Systems	Thomas Rauber, Gudula Rünger	Springer	3/e, 2023						
2	Using OpenMP: Portable Shared Memory Parallel Programming	Barbara Chapman, Gabriele Jost, Ruud van der Pas	MIT Press	1/e,2007						
3	Using MPI: Portable Parallel Programming with the Message-Passing Interface	William Gropp, Ewing Lusk, Anthony Skjellum	MIT Press	3/e, 2014						

	Video Links (NPTEL, SWAYAM)								
Module No.	Link ID								
1	https://archive.nptel.ac.in/courses/106/106/106106112/								
2	https://archive.nptel.ac.in/courses/106/106/106106112/ https://nptel.ac.in/courses/106104120								
3	https://archive.nptel.ac.in/courses/106/106/106106112/ https://nptel.ac.in/courses/106104120								
4	https://archive.nptel.ac.in/courses/106/106/106106112/ https://nptel.ac.in/courses/106104120								

REINFORCEMENT LEARNING

Course Code	PECDT755	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2Hr.30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To provide a comprehensive introduction to the concepts and methods of reinforcement learning and develop skills in implementing reinforcement learning algorithms.
- 2. To enable the learner to apply reinforcement learning techniques to solve real-world problems and to explore advanced topics and recent developments in reinforcement learning.

Module No.	Syllabus Description					
	Introduction to Reinforcement Learning:					
	Basic Concepts: Agents, Environments, Rewards, and Policies,					
1	Single stage decision making problems: N-Arm Bandit Problem, Simulation of N-arm bandit problem, Action-Value Methods, Incremental Implementation, epsilon –greed method, Exploration Vs Exploitation, Pursuit algorithm					
	Markov Decision Processes (MDPs) and Dynamic Programming (DP): Definition and Properties, Value Functions, Bellman Equations, Policy					
2	Evaluation, Improvement, Policy Iteration, Value Iteration, Asynchronous DP, Efficiency of DP Algorithms.	9				
	Monte Carlo Methods and Temporal Difference (TD) Learning:					
3	Monte Carlo Prediction, Monte Carlo Control, Off-policy Prediction and Control, TD Prediction, Q-Learning, SARSA, Eligibility Traces					

Function Approximation and Advanced Topics: Linear Function Approximation, Neural Networks for Function Approximation, Deep Q-Networks (DQN), Policy Gradient Methods, Actor-Critic Methods, Applications of Reinforcement Learning in Games, Robotics, and Other Domains.

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total
5	15	10	10	40

Criteria for Evaluation(Evaluate and Analyse): 20 marks

Sample Analyse level questions

- 1. Break down the role of experience replay and target networks in stabilizing the learning process of DQN. How do these components prevent divergence during training?
- 2. Discuss the interaction between the actor and critic in an Actor-Critic method. How does the balance between these components impact learning stability and convergence speed?

Sample Evaluate level questions

1. Evaluate the computational efficiency of different dynamic programming algorithms (e.g., policy iteration, value iteration, asynchronous DP). How do they scale with increasing state and action space sizes?

End Semester Examination Marks (ESE):

Part A	Part B	Total	
2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24 marks)	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x9 = 36 marks)	60	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe the fundamental concepts of reinforcement learning.	K2
CO2	Solve single stage decision-making problem	K3
CO3	Implement basic reinforcement learning algorithms.	К3
CO4	Evaluate the performance of different reinforcement learning methods.	К5
CO5	Explore advanced techniques and recent developments in the field.	K4

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									3
CO2	3	2	3	3	2							3
CO3	3	3	3	3	2	2						3
CO4	2	3	3	3	2	2						3
CO5	2	3	3	3	3	2	2					3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Reinforcement Learning: An Introduction	Richard S. Sutton, Andrew G. Barto	MIT Press	2/e, 2018		
2	Deep Reinforcement Learning Hands-On	Maxim Lapan	Packt Publishing	2/e, 2020		
3	Reinforcement Learning: State- of-the-Art	Marco Wiering, Martijn van Otterlo	Springer	1/e, 2012		

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Artificial Intelligence: A Modern Approach	Stuart Russell, Peter Norvig	Pearson	3/e, 2010		
2	Algorithms for Reinforcement Learning	Csaba Szepesvári	Morgan & Claypool	1/e, 2010		
3	Deep Learning	Ian Goodfellow, Yoshua Bengio, Aaron Courville	MIT Press	1/e, 2016		

	Video Links (NPTEL, SWAYAM)					
Module No. Link ID						
1	Introduction to Reinforcement Learning https://nptel.ac.in/courses/106106182					
2	Markov Decision Processes and Dynamic Programming https://nptel.ac.in/courses/106105198					
3	Monte Carlo Methods and Temporal Difference Learning https://nptel.ac.in/courses/106105197					
4	Function Approximation and Advanced Topics https://nptel.ac.in/courses/106105194					

CYBER SECURITY

Course Code	OECST721	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	Nil	Course Type	Theory

Course Objectives:

- 1. To teach the basic attacks, threats and vulnerabilities related to cyber security
- 2. To make the learner aware of cyber crimes and cyber laws
- **3.** To give concepts of the malwares and its protection mechanisms in systems and mobile devices

Module No.	Syllabus Description			
	Introduction to Cyber Security :-	Hours		
1	Basic Cyber Security Concepts, Layers of Security, Vulnerability, Threats, Computer Criminals, CIA Triad, Motive of Attackers, Active attacks, Passive attacks, Software attacks, Hardware attacks, Cyber Threats and its Classifications- Malware, Social Engineering, DoS/DDoS, Insider Threats,	9		
	Advanced Persistent Threats (APTs), Data Breaches and Information Theft.			
2	Cybercrime and CyberLaw :- Cybercrime, Classification of Cybercrimes, The legal perspectives- Indian perspective, Global perspective, Categories of Cybercrime. Fundamentals of cyber law, Outline of legislative framework for cyber Law, History and emergence of cyber law, Outreach and impact of cyber law, Major amendments in various statutes.	9		
3	Malwares and Protection against Malwares :- Virus, Worms, Trojans, Spyware, Adware, Key-logger, Ransomware, Common Methods of Malware Propagation- Email Attachments, Malicious Websites, Removable Media, File Sharing Networks, Malvertising, Protection	9		

	against Malware- Antivirus/Antimalware Software, Regular Software Updates, Email Filtering, Web Filtering, Data Backup and Recovery, Strong Passwords	
	and Multi-Factor Authentication (MFA).	
	Mobile App Security :-	
	Security Implications of Mobile Apps, Mobile App Permission Management	
	and Best Practices, Risks of Location-Based Social Networks, Data Security on	
4	Mobile Devices- Importance of Data Security on Mobile Devices to Protect	9
	Sensitive Information, Risks of Unencrypted Data Storage and Communication	
	on Mobile Platforms, Benefits of Device Encryption, Secure Messaging Apps,	
	and Encrypted Storage Solutions.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Explain the attacks, security mechanisms and services to user information	K2
CO2	Identify the cybercrimes and discuss the cyber laws against the crimes	K2
CO3	Discuss the malwares and the protection mechanisms against malwares	К3
CO4	Describe the issues and solutions related with mobile applications	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3										2
CO2	2	3	2									2
CO3	2	3	2									2
CO4	2	3	2									2

	Reference Books						
SI. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Computer Security: Principles and Practices	William Stallings	Pearson	5/e, 2011			
2	Cyber Security- Understanding Cyber Crimes, Computer Forensics and Legal Perspectives	Nina Godbole, Sunit Belapure	Wiley	1/e, 2011			
3	Computer and Cyber Security: Principles, Algorithm, Applications, and Perspectives	B.B.Gupta, D.P Agrawal, Haoxiang Wang.	CRC Press	1/e, 2018			
4	Cyber Security Essentials	James Graham, Richard Howard, Ryan Otson	Auerbach	1/e, 2010			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/111/101/111101137/					
2	https://jurnal.fh.unila.ac.id/index.php/fiat/article/download/2667/1961/12044					
3	https://www.coursera.org/learn/data-security-privacy#modules					
4	https://nptel.ac.in/courses/106105217 https://archive.nptel.ac.in/courses/106/106/106106156/					

CLOUD COMPUTING

Course Code	OECST722	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To understand the core principles, architecture, and technologies that underpin cloud computing, including virtualization, data storage, and cloud services.
- **2.** To equip students with the skills to use cloud computing tools effectively, implement cloud-based applications, and address security challenges within cloud environments.

Module No.	Syllabus Description	Contact Hours
1	Introduction - Cloud Computing, Types of Cloud, Working of Cloud Computing, Cloud Computing Architecture - Cloud Computing Technology, Cloud Architecture, Cloud Modelling and Design.	8
2	Virtualization - Foundations, Grid, Cloud And Virtualization, Virtualization And Cloud Computing; Data Storage And Cloud Computing - Data Storage, Cloud Storage, Cloud Storage from LANs to WANs.	9
3	Cloud Computing Services - Cloud Computing Elements, Understanding Services and Applications by Type, Cloud Services; Cloud Computing and Security - Risks in Cloud Computing, Data Security in Cloud, Cloud Security Services.	10
4	Cloud Computing Tools - Tools and Technologies for Cloud, Apache Hadoop, Cloud Tools; Cloud Applications - Moving Applications to the Cloud, Microsoft Cloud Services, Google Cloud Applications, Amazon Cloud Services.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Articulate the fundamental concepts of cloud computing, its types, and how cloud computing architecture operates.	K2
CO2	Understand and describe the foundations of virtualization, its relationship with cloud computing.	К2
CO3	Describe various cloud computing services, understand the different service models, and identify potential risks.	К3
CO4	Demonstrate proficiency in using cloud computing tools such as Apache Hadoop, and deploy applications using popular cloud platforms.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2									2
CO2	2	2	2	2								2
CO3	2	2	2	2								2
CO4	2	2	2	2								2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Cloud Computing: A Practical Approach for Learning and Implementation	A.Srinivasan, J.Suresh	Pearson	1/e, 2014			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Cloud Computing : Concepts, Technology, Security, and Architecture	Thomas Erl	Pearson	2/e, 2023			
2	Cloud Computing	Sandeep Bhowmik	Cambridge University Press	1/e, 2017			
3	Cloud Computing: A Hands-On Approach	Arshdeep Bahga and Vijay Madisetti	Universities Press	1/e, 2014			

	Video Links (NPTEL, SWAYAM)				
Module No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc21_cs14/preview				

SOFTWARE ENGINEERING

Course Code	OECST723	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- To Provide fundamental knowledge in the Software Development Process including Software Development, Object Oriented Design, Project Management concepts and technology trends.
- 2. To enable the learners to apply state of the art industry practices in Software development.

Module No.	Syllabus Description	Contact Hours
1	 Introduction to Software Engineering and Process Models - Software engineering, Software characteristics and types, Layers of Software Engineering-Process, Methods, Tools and Quality focus. Software Process models – Waterfall, Prototype, Spiral, Incremental, Agile model – Values and Principles. Requirement engineering - Functional, Non-functional, System and User requirements. Requirement elicitation techniques, Requirement validation, Feasibility analysis and its types, SRS document characteristics and its 	9
2	 structure. <i>Case study:</i> SRS for College Library Management Software Software design - Software architecture and its importance, Software architecture patterns: Component and Connector, Layered, Repository, Client- 	10
	Server, Publish-Subscribe, Functional independence – Coupling and Cohesion	10

	Case study: Ariane launch failure	
	Object Oriented Software Design - UML diagrams and relationships- Static	
	and dynamic models, Class diagram, State diagram, Use case diagram,	
	Sequence diagram	
	Case Studies: Voice mail system, ATM Example	
	Software pattern - Model View Controller, Creational Design Pattern types -	
	Factory method, Abstract Factory method, Singleton method, Prototype	
	method, Builder method. Structural Design Pattern and its types - Adapter,	
	Bridge, Proxy, Composite, Decorator, Façade, Flyweight. Behavioral Design	
	Pattern	
	Coding, Testing and Maintenance:	
	Coding guidelines - Code review, Code walkthrough and Code inspection,	
	Code debugging and its methods.	
	Testing - Unit testing , Integration testing, System testing and its types, Black	
	box testing and White box testing, Regression testing	
3	Overview of DevOps and Code Management - Code management, DevOps	10
	automation, Continuous Integration, Delivery, and Deployment (CI/CD/CD),	
	<i>Case study</i> – Netflix.	
	Software maintenance and its types- Adaptive, Preventive, Corrective and	
	Perfective maintenance. Boehm's maintenance models (both legacy and non-	
	legacy)	
	Software Project Management - Project size metrics – LOC, Function points	
	and Object points. Cost estimation using Basic COCOMO.	
	Risk management: Risk and its types, Risk monitoring and management model	
4	Software Project Management - Planning, Staffing, Organisational structures,	7
	Scheduling using Gantt chart. Software Configuration Management and its	
	phases, Software Quality Management - ISO 9000, CMM, Six Sigma for	
	software engineering.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Plan the system requirements and recommend a suitable software process model.	К3
CO2	Model various software patterns based on system requirements.	К3
СО3	Apply testing and maintenance strategies on the developed software product to enhance quality.	К3
CO4	Develop a software product based on cost, schedule and risk constraints.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Software Engineering: A practitioner's approach	Roger S. Pressman	McGraw-Hill	8/e, 2014			
2	Software Engineering	Ian Sommerville	Addison-Wesley	10/e, 2015			
3	Design Patterns, Elements of Reusable Object Oriented Software	Erich Gamma,Richard Helm, Ralph Johnson,John Vlissides	Pearson Education Addison-Wesley	1/e, 2009			

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Pankaj Jalote's Software Engineering: With Open Source and GenAI	Pankaj Jalote	Wiley India	1/e, 2024			
2	Software Engineering: A Primer	Waman S Jawadekar	Tata McGraw-Hill	1/e, 2008			
3	Object-Oriented Modelling and Design with UML	Michael Blaha, James Rumbaugh	Pearson Education.	2/e, 2007			
4	Software Engineering Foundations : A Software Science Perspective	Yingux Wang	Auerbach Publications	1/e, 2008			
5	Object-Oriented Design and Patterns	Cay Horstmann	Wiley India	2/e, 2005			
6	Engineering Software Products: An Introduction to Modern Software Engineering	Ian Sommerville	Pearson Education	1/e, 2020			

	Video Links (NPTEL, SWAYAM)					
Module No.						
1	https://www.youtube.com/watch?v=Z6f9ckEEIsU					
2	https://www.youtube.com/watch?v=1xUz1fp23TQ					
3	http://digimat.in/nptel/courses/video/106105150/L01.html					
4	https://www.youtube.com/watch?v=v7KtPLhSMkU					
2	https://archive.nptel.ac.in/courses/106/105/106105182/					

COMPUTER NETWORKS

Course Code	OECST724	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Introduce the core concepts of computer networking.
- 2. To Explore routing protocols and their role in network communication

Module	Syllabus Description	Contact
No.		
	Introduction to Computer Networks:-	
	Introduction, Network Components, Network Models, ISO/OSI, TCP/IP,	
1	Physical Topology, Overview of the Internet, Protocol layering; Physical	7
	Layer-Transmission media (copper, fiber, wireless), Datagram Networks,	
	Virtual Circuit networks, Performance.	
	Data Link Layer:-	
	Error Detection and Correction - Introduction, Hamming Code, CRC,	
2	Checksum; Framing-Methods, Flow Control- Noiseless Channels, Noisy	11
	Channels; Medium Access Control- Random Access, Controlled Access;	
	Wired LANs - IEEE Standards, Ethernet, IEEE 802.11;	
	Network Layer:-	
	Logical Addressing- IPv4 and IPv6 Addresses; Internet Protocol- IPV4 and	
3	IPv6; Unicast Routing Protocols- Distance Vector Routing, Link State	9
	Routing	
	Multicast Routing Protocols.	
	Transport Layer:-	
4	Transport Layer Protocols- UDP, TCP; Congestion Control- Open Loop Vs	8
	Closed Loop Congestion Control, Congestion Control in TCP; Application	

ſ	Layer - Application Layer Paradigms, Client-server applications, World Wide	
	Web and HTTP, FTP. Electronic Mail, DNS; Peer-to-peer paradigm - P2P	
	Networks.	

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	Assignment	Internal	Internal	
Attendance	Assignment/	Examination-1	Examination- 2	Total
	Microproject	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
2 Questions from each module.	Each question carries 9 marks.	
Total of 8 Questions, each	Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	Each question can have a maximum of 3 subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Comprehend the OSI and TCP/IP models, the functioning of different network layers, and the protocol stack used in computer networks.	К2
CO2	Evaluate various transmission media (copper, fiber, wireless), error detection/correction methods, and medium access control mechanisms in both wired and wireless LANs.	K2
СОЗ	Demonstrate a working knowledge of IPv4 and IPv6 addressing schemes, routing protocols (unicast and multicast), and apply them to network scenarios.	К3
CO4	Summarize UDP and TCP protocols, explain congestion control mechanisms, and understand client-server and peer-to-peer applications like HTTP, FTP, DNS, and P2P networks.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	3	3										3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Computer Networks: A Top- Down Approach	Behrouz A Forouzan	McGraw Hill	SIE, 2017						

	Reference Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Computer Networks, A Systems Approach	L. L. Peterson and B. S. Davie	Morgan Kaufmann	5/e, 2011						
2	TCP/IP Architecture, design, and implementation in Linux	Sameer Seth M. Ajaykumar Venkatesulu	Wiley	1/e, 2008						
3	Computer Networks	Andrew Tanenbaum	Pearson	6/e, 2021						
4	Computer Networking: A Top- Down Approach Featuring Internet	Computer Networking: A Top- Down Approach Featuring Ross		8/e, 2022						

	Video Links (NPTEL, SWAYAM)								
No.	Link ID								
1	https://nptel.ac.in/courses/106/105/106105183/								

MOBILE APPLICATION DEVELOPMENT

Course Code	OECST725	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GXEST204 OR OECST615	Course Type	Theory

(Common to CS/CA/CM/CD/CR/AI/AM/AD)

Course Objectives:

- 1. To impart a Comprehensive Mobile Development Knowledge
- 2. To give Proficiency in Flutter and Dart, UI/UX Design Skills
- **3.** To present the Industry Practices and Deployment such as app security, testing.

Module No.	Syllabus Description							
1	Fundamentals of Mobile Application Development: Introduction to Mobile Application Development, Overview of Mobile Platforms: iOS and Android, Introduction to Flutter: History, Features, and Benefits, Setting Up the Flutter Development Environment*, Mobile App Architectures (MVC, MVVM, and BLoC), Basics of Dart Programming Language.	9						
2	User Interface Design and User Experience: Principles of Mobile UI/UX Design, Designing Responsive UIs with Flutter, Using Flutter Widgets: StatelessWidget and StatefulWidget, Layouts in Flutter: Container, Column, Row, Stack, Navigation and Routing in Flutter, Customizing UI with Themes and Styles.	9						

3	Advanced Flutter Development: State Management in Flutter: Provider, Riverpod, and BLoC Networking in Flutter: HTTP Requests, JSON Parsing, RESTful APIs Data Persistence: SQLite, SharedPreferences, Hive Asynchronous Programming with Dart: Futures, async/await, and Streams	9
4	Industry Practices and App Deployment: Advanced UI Components and Animations, App Security Best Practices, Testing and Debugging Flutter Applications, Publishing Apps to Google Play Store and Apple App Store, Industry Trends and Future of Mobile Development with Flutter	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Explain the basics of mobile application development and different mobile platforms and the environment setup.	K2
CO2	Apply principles of effective mobile UI/UX design, develop responsive user interfaces using Flutter widgets.	К3
CO3	Experiment effectively with state in Flutter applications. networking and data persistence in Flutter apps.	К3
CO4	Apply security best practices in mobile app development and debug Flutter applications effectively.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Flutter Cookbook	Simone Alessandria	Packt	2/e, 2023						
2	Flutter for Beginners	Alessandro Biessek	Packt	1/e, 2019						

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Flutter in Action	Eric Windmill	Manning	1/e, 2019					
2	Flutter and Dart: Up and Running			1/e, 2023					

	Video Links (NPTEL, SWAYAM)						
No. Link ID							
1	https://www.youtube.com/watch?v=VPvVD8t02U8						

SEMESTER 8

COMPUTER SCIENCE AND ENGINEERING (DATA SCIENCE)

TIME SERIES MODELING & ANALYSIS

Course Code	PECDT861	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs.30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

1. To convey the usability of time series data and its analysis in scientific/business applications.

Module No.	Perform Syllabus Description Introduction to time series forecasting- Forecasting, Types of forecasting – Short term, long term. Forecasting data and methods – Qualitative forecasting, Quantitative forecasting. Simple Forecasting methods- Average						
1	Short term, long term. Forecasting data and methods – Qualitative						
2	 Exponential Smoothing – Simple exponential smoothing, Methods with trend, methods with seasonality, estimation and modelling, Forecasting with ETS models. Regression Extension Techniques for time series data – Types of stationary behaviour in time series, Making data stationary, Augmented Dickey-Fuller 	9					

3	Test, Using stationary data techniques – Differencing, Random walk, Trend Differencing, Seasonal Differencing. Time series as a discrete parameter stochastic process, Auto- correlation Function (ACF), Partial Autocorrelation Function (PACF) and cross correlations, Auto Correlation Plots – Trend and seasonality in ACF plots. Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA), Autoregressive Integrated Moving Average (ARIMA) models, Seasonal ARIMA (SARIMA) models.	9
4	Introduction to Multivariate Time series Modelling, Vector Autoregressive models, Vector ARMA Models, Fitting VAR and VARMA models. Dynamic Regression Models – Estimation, Regression with ARIMA errors using R packages (fable), forecasting, stochastic and deterministic trends.	9

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance Internal Ex		Evaluate	Analyse	Total
5	15	10	10	40

End Semester Examination Marks (ESE):

	Part A	Part B	Total
•	module.	2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 sub divisions. Each question carries 9 marks.	60
	(8x3 = 24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe different types of forecasting, fundamental principles of time series data, analyse various time series processes	K2
CO2	Apply and interpret a variety of time series models and determine the most suitable model for various types of time series data.	К3
CO3	Apply exponential smoothing methods for forecasting and analyse time series patterns.	К3
CO4	Implement dynamic regression models	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3										3
CO2	3	3	3	2								3
CO3	3	3	3	2								3
CO4	3	3										3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Forecasting: Principles and Practice	Robin John, Hyndman, George Athanasopoulos	OTexts	3/e, 2021					
2	Hands-on Time Series Analysis with Python	BV Vishwas, Ashish Patel	Apress	1/e, 2020					
3	The Analysis of Time Series An Introduction with R	Chris Chatfield, Haipeng Xing	Chapman & Hall	7/e, 2019					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Time series Analysis and its Applications.	Shumway, R. H and Stoffer							
2	Time Series Analysis and Its Applications: With R Examples	Robert H. Shumway and David S. Stoffer	Springer	4/e, 2017					
3	Time Series Analysis: Forecasting and Control	George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel	Wiley	5/e, 2015					
4	Applied Time Series Analysis	Wayne A. Woodward, Henry L. Gray, and Alan C. Elliott	CRC Press	7/e, 2017					

	Video Links (NPTEL, SWAYAM)							
Module No. Link ID								
1	https://onlinecourses.nptel.ac.in/noc21_ch28/preview							

HEALTHCARE DATA ANALYTICS

Course Code	PECDT862	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To introduce the student to health data formats, health care policy and standards and learn the significance and need of data analysis and data visualization
- **2.** To teach how health data management frameworks works and learn the use of machine learning and deep learning algorithms in healthcare.

Module No.	Syllabus Description	Contact Hours				
1	INTRODUCTION TO HEALTHCARE ANALYSIS - Overview - History of Healthcare Analysis Parameters on medical care systems- Health care policy- Standardized code sets – Data Formats – Machine Learning Foundations: Tree Like reasoning , Probabilistic reasoning and Bayes Theorem, Weighted sum approach.					
2	ANALYTICS ON MACHINE LEARNING - Machine Learning Pipeline – Pre-processing –Visualization – Feature Selection – Training model parameter – Evaluation model : Sensitivity , Specificity , PPV ,NPV, FPR , Accuracy , ROC , Precision Recall Curves , Valued target variables – Python: Variables and types, Data Structures and containers , Pandas Data Frame : Operations – Scikit –Learn : Pre-processing , Feature Selection.	8				
3	HEALTH CARE MANAGEMENT - IOT- Smart Sensors – Migration of Healthcare Relational database to NoSQL Cloud Database – Decision Support System – Matrix block Cipher System – Semantic Framework Analysis –	10				

	Histogram bin Shifting and Rc6 Encryption - Clinical Prediction Models -	
	Visual Analytics for Healthcare.	
	HEALTHCARE AND DEEP LEARNING - Introduction on Deep Learning	
4	- DFF network CNN- RNN for Sequences - Biomedical Image and Signal	10
4	Analysis - Natural Language Processing and Data Mining for Clinical Data -	
	Mobile Imaging and Analytics – Clinical Decision Support System.	

(CIE: 40 marks,ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each	• Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Describe the health data formats, health care policy and standards	K2
CO2	Identify the significance and need of data analysis and data visualization	K2
CO3	Explain the health data management frameworks	K2
CO4	Explain the use of machine learning and deep learning algorithms in healthcare	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3

	Text Books								
Sl. No	Title of the Book	Title of the BookName of the Author/s		Edition and Year					
1	Big Data Analytics in HealthCare	Anand J. Kulkarni et. al.	Springer	1/e, 2020					
2	Healthcare Analytics: From Data to Knowledge to Healthcare Improvement	Hui Yang and Eva K. Lee	Wiley	1/e, 2016					
3	Healthcare data analytics	Chandan K. Reddy and Charu C Aggarwal	Taylor & Francis	1/e, 2015					

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	HealthCare Analysis Made Simple	Vikas Kumar	Packt Publishing	1/e, 2018			
2	Healthcare Data Analytics and Management	Nilanjan Dey, Amira Ashour , Simon James Fong, Chintan Bhatt	Academic Press	1/e, 2018			

	Video Links (NPTEL, SWAYAM)					
Module No.	D. Link ID					
1	Exploring Survey Data on Health Care, IIT Roorkee https://nptel.ac.in/courses/109107190					
2	Medical Image Analysis https://onlinecourses.nptel.ac.in/noc24_ee57/preview					
3	Analytics in Healthcare Management and Administration https://www.coursera.org/learn/analytics-in-healthcare-management-and-administration					
4	Big Data Analytics for Healthcare https://www.my-mooc.com/en/mooc/bigdataanalytics					

SOCIAL NETWORK ANALYSIS

Course Code	PECDT863	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To enable the learners to understand the concepts of semantic web and related applications.
- 2. To impart the idea of knowledge representation using ontology.
- **3.** To learn to explore human behaviour in social web and related communities and various forms of social network visualization.

Module No.	Syllabus Description	Contact Hours
1	Introduction:- Introduction to Semantic Web – Limitations of Current Web, Development of Semantic Web, Emergence of the Social Web; Social Network Analysis – Development of Social Network Analysis, Key Concepts and Measures in Social Network Analysis; Electronic Sources for Network Analysis – Electronic Discussion Networks, Blogs and Online Communities, Web- Based Networks, Applications of Social Network Analysis.	8
2	Modelling, Aggregating and Knowledge Representation:- Ontology and Their Role in Semantic Web – Ontology-Based Knowledge Representation; Ontology Languages for the Semantic web – Resource Description Framework, Web Ontology Language; Modelling and Aggregating Social Network Data – State-of-the-art in Network Data Representation, Ontological Representation of Social Individuals, Ontological Representation of Social Individuals, Ontological Representation of Social Relationships, Aggregating and Reasoning with Social Network Data, Advanced Representations.	8

	Extraction and Mining Communities in Web Social Networks:-	
	Extracting evolution of Web Community from a Series of Web Archive,	
	Detecting Communities in Social Networks, Definition of Community,	
3	Evaluating Communities, Methods for Community Detection and Mining,	8
5	Applications of Community Mining Algorithms, Tools for Detecting	0
	Communities Social Network Infrastructures and communities,	
	Decentralized Online Social Networks, Multi-Relational Characterization of	
	Dynamic Social network communities.	
	Predicting Human Behaviour for Social Communities:-	
	Understanding and Predicting Human Behavior for Social Communities,	
	User Data Management, Inference and Distribution, Enabling New Human	
	Experiences, Reality Mining, Context-Awareness, Privacy in Online Social	
	Networks, Trust in Online Environment, Trust Models Based on Subjective	
	Logic, Trust Network Analysis, Trust Transitivity Analysis, Combining	
4	Trust and Reputation, Trust Derivation Based on Trust Comparisons, Attack	12
	Spectrum and Counter Measures.	
	Visualization of Social Networks:-	
	Graph theory, Centrality, Clustering, Node-Edge Diagrams, Matrix	
	Representation, Visualizing Online Social Networks, Visualizing Social	
	Networks with Matrix-Based Representations, Matrix and Node-Link	
	Diagrams, Hybrid Representations.	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each module.	• Each question carries 9 marks.	
• Total of 8 Questions, each	• Two questions will be given from each module, out of	
carrying 3 marks	which 1 question should be answered.	60
	• Each question can have a maximum of 3 subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Design and develop semantic web for the analysis of social networks.	К3
CO2	Demonstrate how knowledge can be represented using ontology.	К3
CO3	Explain how human behaviour can be predicted for social communities.	K2
CO4	Use various mechanisms to visualize social networks.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									2
CO2	3	3	3									2
CO3	3	3	3									2
CO4	3	3	3									2

	Text Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	Social Networks and the Semantic Web	Peter Mika	Springer	1/e, 2010			
2	Handbook of Social Network Technologies and Applications	Borko Furht	Springer-Verlag	1/e, 2010			

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Web Mining and Social Networking – Techniques and applications	Guandong Xu ,Yanchun Zhang and Lin Li	Springer-Verlag	1/e, 2011		
2	Social information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively	Dion Goh and Schubert Foo	Idea Group	1/e, 2007		
3	Collaborative and Social Information Retrieval and Access: Techniques for Improved user Modelling	Max Chevalier, Christine Julien and Chantal Soulé- Dupuy	Information Science Reference	1/e, 2009		
4	The Social Semantic Web	John G. Breslin, Alexander Passant and Stefan Decker	Springer	1/e, 2009		

	Video Links (NPTEL, SWAYAM)				
Sl. No.	Sl. No. Link ID				
1	1 https://onlinecourses.nptel.ac.in/noc22_cs117/preview				

NATURAL LANGUAGE PROCESSING

Course Code	PECST862	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

(Common to CS/CA/CD)

Course Objectives:

- **1.** To provide a comprehensive understanding of natural language processing (NLP) and language models, focusing on the principles and techniques of prompt engineering to effectively guide and optimize AI-driven outputs.
- 2. practical skills necessary to design, implement, and evaluate prompt engineering strategies across various applications, while considering the ethical implications and challenges associated with AI-generated content.

Module No.	Syllabus Description			
1	Introduction to NLP: Introduction to Natural Language Processing - Various stages of traditional NLP – Challenges - Basic Text Processing techniques - Common NLP Tasks. N-gram Language Models - Naive Bayes for Text Classification, and Sentiment Analysis – Evaluation-Precision, Recall and F-measure-Test sets and cross validation.	7		
2	Traditional NLP Techniques: Annotating Linguistic Structures - Context-Free Grammars, Constituency Parsing, Ambiguity, CYK Parsing, Dependency Parsing - Transition-Based Dependency Parsing, Graph-Based Dependency Parsing, Evaluation.	7		
3	Neural Networks for NLP: Word representations - Lexical Semantics, Vector Semantics, TF-IDF,	10		

	Pointwise Mutual Information (PMI), Neural Word embeddings - Word2vec, GloVe, Contextual Word Embeddings. Evaluating Vector Models - Feedforward Neural Networks for Text Classification	
4	Advanced NLP and Applications:Sequence Modelling - Recurrent Neural Networks, RNNs as LanguageModels, RNNs for NLP tasks, Stacked and Bidirectional RNN architectures,Recursive Neural Networks, LSTM & GRU, Common RNN NLPArchitectures, Encoder-Decoder Model with RNNs, Attention models,Transformers.NLP Applications - Machine Translation, Question Answering andInformation Retrieval, Introduction to Large Language Models.	12

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the foundational concepts of NLP and apply that to do text processing.	К3
CO2	Utilize word representations and evaluate vector models for NLP	K3
СО3	Analyse and implement advanced linguistic annotation and parsing techniques	K4
CO4	Apply advanced sequence modeling techniques using Neural Networks	K3
CO5	Apply NLP techniques in machine translation, question answering, and information retrieval.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3								3		
CO2	3	3			3							
CO3	3	3									3	
CO4	3	3	3		3							
CO5	3	3	3			3						

	Text Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Speech and language processing: An introduction to natural language processing, computational linguistics, and speech recognition	Dan Jurafsky and James H. Martin.	Pearson	2006				
2	Introduction to Natural Language Processing	Jacob Eisenstein	MIT Press	2019				
3	Natural Language Processing with Transformers	Lewis Tunstall, Leandro von Werra, and Thomas Wolf	O'Reilly	2022				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Deep learning for Natural Language Processing	Stephan Raaijmakers	Manning	2022				
2	Natural Language Processing with PyTorch	Delip Rao and Brian McMahan	O'Reilly	2019				
3	Deep Learning	Ian Goodfellow, Yoshua Bengio, Aaron Courville	MIT Press	2016				

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://onlinecourses.nptel.ac.in/noc19_cs56				

SPEECH AND AUDIO PROCESSING

(Common to CS/CA/CM/CD/CR/AD/CC/CG)

Course Code	PECST866	CIE Marks	40
Teaching Hours/Week (L:T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	PECST636	Course Type	Theory

Course Objectives:

- 1. To get familiarised with speech processing and audio processing concepts.
- **2.** To equip the student to apply speech processing techniques in finding solutions to day-to-day problems

Module No.	Syllabus Description	Contact Hours
1	Speech Production :- Acoustic theory of speech production; Source/Filter model - Pitch, Formant; Spectrogram- Wide and narrow band spectrogram; Discrete model for speech production; Short-Time Speech Analysis; Windowing; STFT; Time domain parameters (Short time energy, short time zero crossing Rate, ACF); Frequency domain parameters - Filter bank analysis; STFT Analysis.	9
2	Mel-frequency cepstral coefficient (MFCC)- Computation; Pitch Estimation ACF/AMDF approaches; Cepstral analysis - Pitch and Formant estimation using cepstral analysis; <i>LPC Analysis</i> - LPC model; Auto correlation method - Levinson Durbin Algorithm	9
3	Speech Enhancement :- Spectral subtraction and Filtering, Harmonic filtering, Parametric resynthesis; Speech coding - fundamentals, class of coders : Time domain/spectral domain/vocoders, Sub band coding, adaptive transform coding, phase vocoder; Speaker Recognition :- Speaker	9

	verification and speaker identification, log-likelihood; Language					
	identification - Implicit and explicit models; Machine learning models in					
	Speaker Recognition.					
	Signal Processing models of audio perception - Basic anatomy of hearing					
	System, Basilar membrane behaviour; Sound perception - Auditory Filter					
4	Banks, Critical Band Structure, Absolute Threshold of Hearing; Masking -	9				
	Simultaneous Masking, Temporal Masking; Models of speech perception.					

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome			
CO1	To recall various steps in the speech production process	K2		
CO2	To summarise various speech processing approaches	K2		
CO3	To develop speech-processing applications in various domains	K3		
CO4	To analyse the speech processing model for audio perception	K4		

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2		2	2					3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3	2			2					3

	Text Books							
Sl. No	Title of the Book Name of the Author		Name of the Publisher	Edition and Year				
1	Speech Communications: Human & Machine	Douglas O'Shaughnessy	IEEE Press	2/e, 1999				
2	Discrete-Time Speech Signal Processing: Principles and Practice	Thomas F. Quatieri	Prentice Hall	1/e, 2001				
3	Fundamentals of Speech Recognition	Lawrence Rabiner, Biing- Hwang Juang, B. Yegnanarayana	Pearson	1/e, 2008				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Theory and Application of Digital Processing of Speech Signals	Rabiner and Schafer	Prentice Hall	1/e, 2010				
2	Speech and Audio Signal Processing: Processing and Perception Speech and Music	Nelson Morgan and Ben Gold	John Wiley & Sons	2/e, 2011				

	Video Links (NPTEL, SWAYAM)					
No.	Link ID					
1	1 https://youtu.be/Xjzm7S_kBU?si=j11bk3F7gocYjhfg					

STORAGE SYSTEMS

(Common to CS/CM/CR/CD/AM/AD)

Course Code	PECST867	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of storage technologies and architectures.
- 2. To empower students to design and implement effective storage solutions.

Module No.	Syllabus Description	Contact Hours		
1	Storage technologies:-Computer storage technologies-Magnetic bubble memories, ChargedCoupled Devices - CCDs, Micro-Electro-Mechanical Systems- MEMS, Flash memories, Processing In Memory - PIM, Optical storage -Data deduplication in storage systems.Storage Arrays- Architectural Principles, Replication, Local SnapshotRedundant Arrays of Independent Disks (RAID) - RAID0,RAID2,RAID3,RAID4, RAID5, RAID6, Hybrid RAID.			
2	Data Storage Networking:-Fibre Channel SAN- FC SAN Components, SAN Topologies, iSCSI SAN-iSCSI names, Sessions, iSNS,Network Attached Storage - NAS Protocols, NAS Arrays, NAS PerformanceObject Storage - Objects and Object IDs, metadata, API Access	9		
3	Business Continuity, Backup and Recovery:-Replication-SynchronousReplication,AsynchronousReplicationApplication,LayerReplication,LogicalVolumeManager–BasedReplication,	9		

	 Backup Methods- Hot Backups, Offline Backups, LAN-Based Backups, LAN-Free Backups (SAN Based), Serverless Backups, NDMP, Backup Types- Full Backups, Incremental Backups, Differential Backups , 		
	Synthetic Full Backups, Application-Aware Backups		
4	Storage Management:-CapacityManagementCapacityManagementConsiderations,Deduplication and Compression,QuotasandArchiving,ShowbackandChargeback,PerformanceManagement-Latency/ResponseTime,IOPS,MBpsandTransferRate,FactorsAffectingStoragePerformanceManagementManagementProtocolsandInterfaces.	9	

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A agion mont/	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1	Examination- 2	Total
		(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Describe emerging storage technologies.	K2
CO2	Compare and contrast different storage networking technologies.	K2
CO3	Understand the importance of business continuity.	K2
CO4	Develop a comprehensive backup and recovery strategy	К3
CO5	Utilize management tools and best practices to monitor, optimize, and secure storage resources, ensuring optimal performance and data integrity.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2									3
CO2	3	3	2									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

	Text Books							
Sl. NoTitle of the BookName of the Author/sName of the PublisherEdition and Year								
1	Data Storage Networking	Nigel Poulton	WILEY	2/e, 2015				
2	Computer Storage Fundamentals	Susanta Dutta	BPB Publication	1/e, 2018				

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Storage Systems : Organization, Performance, Coding, Reliability, and Their Data Processing	Alexander Thomasian	Morgan Kaufmann	1/e, 2021				
2	Information Storage and Management	Somasundaram Gnanasundaram Alok Shrivastava	Wiley	2/e, 2012				

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	https://archive.nptel.ac.in/courses/106/108/106108058/					

PROMPT ENGINEERING

(Common to CS/CM/CR/CD/AD/AM)

Course Code	PECST868	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To develop students' practical skills in applying prompt engineering techniques to real-world applications, while fostering an awareness of the ethical considerations and challenges in the field
- **2.** To give an understanding of contextual cues to mitigating biases with techniques for seamless interaction with AI systems.

SYLLABUS

Module No.	Syllabus Description				
	Introduction to Prompt Engineering and Language Models :-				
	Fundamentals of Natural Language Processing (NLP) - Overview of Language				
	Models: From Rule-Based Systems to Transformer Architectures (e.g., GPT,				
	BERT) - Understanding Prompts: Definition, Importance, and Applications -				
1	Introduction to Prompt Engineering: Techniques and Use Cases - Ethical				
	Considerations in Prompt Engineering				
	Handson : Explore various language models using platforms like OpenAI,				
	Hugging Face, or Google Colab; Experimenting with basic prompts to				
	understand the impact of phrasing and context on model outputs.				
	Techniques and Strategies in Prompt Engineering :-				
	Designing Effective Prompts - Best Practices and Common Pitfalls; Prompt				
2	Tuning and Fine-Tuning Language Model; Using Zero-Shot, Few-Shot, and				
	Multi-Shot Learning in Prompts; Exploring the Role of Context, Repetition,				
	and Specificity in Prompt Responses; Advanced Prompt Engineering				

	Techniques: Prompt Chaining, Iterative Prompting.					
	Handson : Crafting and optimizing prompts for specific tasks (e.g., text					
	generation, summarization, Q&A); Using prompt engineering to fine-tune pre-					
	trained models on specific datasets or tasks.					
	Applications of Prompt Engineering :-					
	Prompt Engineering in Chatbots and Conversational AI; Content Generation:					
	Creative Writing, Code Generation, and Data Augmentation; Prompt					
	Engineering for Sentiment Analysis, Classification, and Translation;					
3	Integration of Prompt Engineering with Other AI Technologies (e.g.,	9				
5	Computer Vision, Data Science); Real-World Case Studies and Industry	9				
	Applications					
	Handson : Developing a simple chatbot using prompt engineering techniques,					
	Case study analysis and reproduction of real-world prompt engineering					
	applications					
	Challenges, Future Trends, and Research in Prompt Engineering :-					
	Challenges in Prompt Engineering: Ambiguity, Bias, and Misinterpretation;					
4	Evaluating and Improving Prompt Performance: Metrics and Benchmarks;	9				
4	Future Trends: Emerging Techniques and the Evolution of Language Models;					
	Handson : Working on a capstone project to solve a real-world problem using					
	prompt engineering					

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Explain the core principles of NLP, language models, and the role of prompts in influencing AI behavior.	К2
CO2	Demonstrate the ability to design and fine-tune prompts for specific tasks, optimizing language models for desired outputs	К3
СО3	Apply prompt engineering techniques to develop functional AI applications, such as chatbots, content generation tools, and automated systems.	К3
CO4	Compare the ethical implications of prompt engineering, addressing challenges such as bias, ambiguity, and misuse, and propose solutions to mitigate these issues.	К3
CO5	Apply prompt engineering techniques to a variety of assigned tasks	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3									3
CO3	3	3	3									3
CO4	3	3	3									3
CO5	3	3	3									3

	Text Books									
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year						
1	Speech and Language Processing	Daniel Jurafsky and James H. Martin	Pearson	2/e, 2013						
2	Unlocking the Secrets of Prompt Engineering	Gilbert Mizrahi	Packt	1/e, 2023						
3	Prompt Engineering	Ian Khan	Wiley	1/e, 2024						

	Reference Books										
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year							
1	Natural Language Processing with Python	Steven Bird, Ewan Klein, and Edward Loper	Oreilly	1/e, 2009							
2	Transformers for Natural Language Processing	Denis Rothman	Packt	1/e, 2021							

NEXT GENERATION INTERACTION DESIGN

(Common to CS/CR/CM/CA/CD/AM/AD/CN/CC/CI/CG)

Course Code	PECST865	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	5/3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To provide a comprehensive understanding of the principles of interaction design and their application in augmented reality (AR) and virtual reality (VR) environments.
- **2.** To equip learners with practical skills in developing, prototyping, and evaluating AR/VR applications, focusing on user-centered design and advanced interaction techniques.

Module No.	Syllabus Description						
	Introduction to Interaction Design and AR/VR :- Fundamentals of						
	Interaction Design - Principles of interaction design, Human-computer						
1	interaction (HCI) basics, User experience (UX) design principles;	8					
1	Introduction to AR and VR - Overview of AR and VR technologies (Key	o					
	differences and Application), Overview of AR/VR hardware (headsets,						
	controllers, sensors), Software tools and platforms for AR/VR development.						
	User-Centered Design and Prototyping :-						
	Understanding User Needs and Context - User research methods, Personas						
	and user journey mapping, Contextual inquiry for AR/VR, Designing for						
2	AR/VR Environments, Spatial design principles, Immersion and presence in AR/VR, User interface (UI) design for AR/VR; Prototyping and Testing -						
	Rapid prototyping technique, Usability testing methods, Iterative design and						
	feedback loops.						
	Advanced Interaction Techniques :-						
3	Gesture - Designing for gesture-based interaction, Implementing gesture	11					
	controls in AR/VR applications; Voice - Voice recognition technologies,						

	Integrating voice commands in AR/VR; Haptic Feedback and Sensory Augmentation - Understanding haptic feedback and tactile interactions; Eye Gaze - Designing and integrating Eye Gaze in VR; Spatial Audio; Microinteraction; Motion capture and tracking technologies; Natural Language Interaction and conversational interfaces; Type of IoT sensors and uses.	
4	Implementation, Evaluation, and Future Trends :- Developing AR/VR Projects - Project planning and management, Collaborative design and development, Case studies of successful AR/VR projects; Evaluating AR/VR Experiences - Evaluation methods and metrics, Analyzing user feedback, Refining and improving AR/VR applications; Future Trends and Ethical Considerations- Emerging technologies in AR/VR, Ethical implications of AR/VR, Future directions in interaction design for AR/VR.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Internal Ex	Evaluate	Analyse	Total	
5	15	10	10	40	

Criteria for Evaluation(Evaluate and Analyse): 20 marks

- The students must be directed to measure the quality of the interfaces / GUI based on various techniques such as user testing.
- The students may be assessed based on their ability to analyze various performance of the interfaces /GUIs.

End Semester Examination Marks (ESE):

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
 2 Questions from each module. Total of 8 Questions, each carrying 3 marks (8x3 =24marks) 	 2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 3 subdivisions. Each question carries 9 marks. (4x9 = 36 marks) 	60

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Apply fundamental interaction design principles and human-computer interaction (HCI) concepts to create effective and intuitive user experiences in AR/VR applications.	К3
CO2	Demonstrate proficiency in using AR/VR hardware and software tools for the development and prototyping of immersive environments.	К3
CO3	Conduct user research and apply user-centered design methodologies to tailor AR/VR experiences that meet specific user needs and contexts.	К4
CO4	Implement advanced interaction techniques such as gesture controls, voice commands, haptic feedback, and eye gaze in AR/VR applications to enhance user engagement and immersion.	К3
CO5	Evaluate AR/VR projects, utilizing appropriate evaluation methods and metrics, and propose improvements based on user feedback and emerging trends in the field.	К5

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3								3
CO2	3	3	3	3	3							3
CO3	3	3	3	3	3							3
CO4	3	3	3	3	3							3
CO5	3	3	3	3								3

	Re	ference Books			
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year 1/e, 2023	
1	Augmented Reality - Theory, Design and Development	Chetankumar G Shetty	McGraw Hill		
2	Virtual Reality and Augmented Reality: Myths and Realities	Ralf Doerner, Wolfgang Broll, Paul Grimm, and Bernhard Jung	Wiley	1/e, 2018	
3	Augmented Reality: Principles and Practice	Pearson	1/e, 2016		
4	Human–Computer Interaction	Alan Dix, Janet Finlay, Gregory D. Abowd, Russell Beale	Pearson	3/e, 2004	
5	Evaluating User Experience in Games: Concepts and Methods	Regina Bernhaupt	Springer	1/e, 2010	
6	Measuring the User Experience: Collecting, Analyzing, and Presenting Usability Metrics	Bill Albert, Tom Tullis	Morgan Kaufman	2/e, 2013	
7	The Fourth Transformation: How Augmented Reality & Artificial Intelligence Will Change Everything	Robert Scoble and Shel Israel	Patrick Brewster	1/e, 2016	
8	Augmented Reality and Virtual Reality: The Power of AR and VR for Business	M. Claudia tom Dieck and Timothy Jung	Springer	1/e, 2019	

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	Interaction Design https://archive.nptel.ac.in/courses/107/103/107103083/				
2	Virtual Reality https://archive.nptel.ac.in/courses/106/106/106106138/				
3	Augmented Reality https://www.youtube.com/watch?v=WzfDo2Wpxks				

INTRODUCTION TO ALGORITHM

(Common to CS/CA/CM/CD/CR/AD/AM)

Course Code	OECST831	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- **1.** To give proficiency in analysing algorithm efficiency and solve a variety of computational problems, including sorting, graph algorithms.
- 2. To provide an understanding in algorithmic problem-solving techniques, including Divide and Conquer, Greedy Strategy, Dynamic Programming, Backtracking, and Branch & Bound algorithms.

Module No.	Syllabus Description		
1	Introduction to Algorithm Analysis Time and Space Complexity- Asymptotic notation, Elementary operations and Computation of Time Complexity-Best, worst and Average Case Complexities- Complexity Calculation of simple algorithms Recurrence Equations: Solution of Recurrence Equations – Iteration Method and Recursion Tree Methods	9	
2	Trees - Binary Trees – level and height of the tree, complete-binary tree representation using array, tree traversals (Recursive and non-recursive), applications. Binary search tree – creation, insertion and deletion and search operations, applications; Graphs – representation of graphs, BFS and DFS (analysis not required), Topological Sorting.	9	

	Divide and Conquer - Control Abstraction, Finding Maximum and Minimum, Costs associated element comparisons and index comparisons, Binary Search, Quick Sort, Merge Sort - Refinements; Greedy Strategy - Control Abstraction, Fractional Knapsack Problem, Minimum Cost Spanning Trees – PRIM's Algorithm, Kruskal's Algorithm, Single Source Shortest Path Algorithm - Dijkstra's Algorithm.	9
4	Dynamic Programming - The Control Abstraction- The Optimality Principle - Matrix Chain Multiplication, Analysis; All Pairs Shortest Path Algorithm - Floyd-Warshall Algorithm; The Control Abstraction of Backtracking – The N-Queens Problem. Branch and Bound Algorithm for Travelling Salesman Problem.	9

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

	A agi ga a a a t	Internal	Internal	
Attendance	Assignment/ Microproject	Examination-1	Examination- 2	Total
	whereproject	(Written)	(Written)	
5	15	10	10	40

End Semester Examination Marks (ESE)

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
C01	Identify algorithm efficiency using asymptotic notation, compute complexities, and solve recurrence equations	К3
CO2	Use binary trees and search trees, and apply graph representations, BFS, DFS, and topological sorting	К3
СО3	Use divide and conquer to solve problems like finding maximum/minimum, binary search, quick sort, and merge sort	К3
CO4	Apply greedy strategies to solve the fractional knapsack problem, minimum cost spanning trees using Prim's and Kruskal's algorithms, and shortest paths with Dijkstra's algorithm.	К3
CO5	Understand the concepts of Dynamic Programming, Backtracking and Branch & Bound	K2

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									1
CO2	2	3	2	2								2
CO3	3	3	3	2								2
CO4	2	2										2
CO5	2	3	2									2

		Text Books		
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year
1	Introduction to Algorithms	T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein	Prentice-Hall India	4/e, 2022
2	Fundamentals of Computer Algorithms	Ellis Horowitz, SartajSahni, Sanguthevar Rajasekaran	Universities Press	2/e, 2008

	Reference Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Algorithm Design	Jon Kleinberg, Eva Tardos	Pearson	1/e, 2005		
2	Algorithms	Robert Sedgewick, Kevin Wayne	Pearson	4/e, 2011		
3	The Algorithm Design Manual	Steven S. Skiena	Springer	2/e, 2008		

	Video Links (NPTEL, SWAYAM)				
No.	No. Link ID				
1	https://archive.nptel.ac.in/courses/106/105/106105164/				

WEB PROGRAMMING

Course Code	OECST832	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	GXEST203	Course Type	Theory

Course Objectives:

- 1. To equip students with the knowledge and skills required to create, style, and script web pages using HTML5, CSS, JavaScript, and related technologies.
- 2. To provide hands-on experience with modern web development tools and frameworks such as React, Node.js, JQuery, and databases, enabling students to design and build dynamic, responsive, and interactive web applications.

Module No.	Syllabus Description	
1	Creating Web Page using HTML5 - Introduction, First HTML5 example, Headings, Linking, Images, Special Characters and Horizontal Rules, Lists, Tables, Forms, Internal Linking, meta Elements, HTML5 Form input Types, Input and datalist Elements and autocomplete Attribute, Page-Structure Elements; Styling Web Page using CSS - Introduction, Inline Styles, Embedded Style Sheets, Linking External Style Sheets, Positioning Elements:, Absolute Positioning, z-index, Positioning Elements: Relative Positioning, span, Backgrounds, Element Dimensions, Box Model and Text Flow, Media Types and Media Queries, Drop-Down Menus; Extensible Markup Language - Introduction, XML Basics, Structuring Data, XML Namespaces, Document Type Definitions (DTDs), XML Vocabularies	9
2	Scripting language - Client-Side Scripting, Data Types, Conditionals, Loops, Arrays, Objects, Function Declarations vs. Function Expressions, Nested Functions, The Document Object Model (DOM) - Nodes and NodeLists, Document Object, Selection Methods, Element Node Object, Event Types	

	Asynchronous JavaScript and XML - AJAX : Making AsynchronousRequests , Complete Control over AJAX , Cross-Origin Resource SharingJavaScript library - jQuery - jQuery Foundations - Including jQuery, jQuery			
	Selectors, Common Element Manipulations in jQuery, Event Handling in			
	jQuery			
3	JavaScript runtime environment : Node.js - The Architecture of Node.js,			
	Working with Node.js, Adding Express to Node.js; Server-side programming			
	language : PHP - What Is Server-Side Development? Quick tour of PHP,			
	Program Control , Functions , Arrays , Classes and Objects in PHP , Object-			
	Oriented Design ; Rendering HTML : React - ReactJS Foundations : The			
	Philosophy of React, What is a component? Built- in components, User- defined			
	components - Types of components, Function Components, Differences			
	between Function and Class Components			
4	SPA – Basics, Angular JS; Working with databases - Databases and Web			
	Development, SQL, Database APIs, Accessing MySQL in PHP; Web			
	Application Design - Real World Web Software Design, Principle of Layering,			
	Software Design Patterns in the Web Context, Testing; Web services -			
	Overview of Web Services - SOAP Services, REST Services, An Example Web			
	Service, Web server - hosting options			

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A Part B		Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	(0)
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Develop structured web pages with HTML5 and style them using CSS	К3	
	techniques, including positioning, media queries, and the box model.		
CO2	Write client-side scripts using JavaScript and utilize jQuery for DOM manipulation, event handling, and AJAX requests to create responsive	К3	
	and interactive user interfaces.		
CO2	Build and deploy server-side applications using Node.js, Express, and	V2	
CO3	PHP, and integrate databases using SQL to store and retrieve data for dynamic content generation.	К3	
CO4	Utilize React for building component-based single-page applications (SPAs), understanding the fundamental principles of component architecture, and leveraging AngularJS for web application development.	K3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3		3							3
CO2	3	3	3		3							3
CO3	3	3	3		3							3
CO4	3	3	3		3							3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Fundamentals of Web Development	Randy Connolly, Ricardo Hoar	Pearson	1/e, 2017		
2	Building User Interfaces with ReactJS - An Approachable Guide	Chris Minnick	Wiley	1/e, 2022		
3	Internet & World Wide Web - How to Program	Paul J. Deitel, Harvey M. Deitel, Abbey Deitel	Pearson	1/e, 2011		
4	SPA Design and Architecture: Understanding Single Page Web Applications	Emmit Scott	Manning Publications	1/e, 2015		

	Reference Books						
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year			
1	A Hand Book On Web Development : From Basics of HTML to JavaScript and PHP	Pritma Jashnani	Notion press	1/e, 2022			
2	Advanced Web Development with React	Mohan Mehul	BPB	1/e, 2020			
3	JavaScript Frameworks for Modern Web Development	Tim Ambler, Sufyan bin Uzayr, Nicholas Cloud	Apress	1/e, 2019			

	Video Links (NPTEL, SWAYAM)					
Module No.	Link ID					
1	1 https://archive.nptel.ac.in/courses/106/106/106106222/					
2	https://archive.nptel.ac.in/courses/106/106/106106156/					

SEMESTER S8

SOFTWARE TESTING

Course Code	OECST833	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objectives:

- 1. To Cultivate proficiency in software testing methodologies and techniques.
- 2. To Foster expertise in software testing tools and technologies.

Module	Syllabus Description	Contact
No.	Synabus Description	
	Introduction to Software Testing & Automation:-	
	Introduction to Software Testing - Concepts, importance of testing, software	
	quality, and real-world failures (e.g., Ariane 5, Therac 25); Software Testing	
	Processes - Levels of thinking in testing; Testing Terminologies - Verification,	
	validation, fault, error, bug, test cases, and coverage criteria; Types of Testing -	
1	Unit, Integration, System, Acceptance, Performance (stress, usability, regression),	8
	and Security Testing; Industry Trends - AI in test case automation, Introduction to	
	GenAI in testing; Testing Methods - Black-Box, White-Box, and Grey-Box	
	Testing; Automation in Testing - Introduction to automation tools (e.g., Selenium,	
	Cypress, JUnit); Case Study- Automation of Unit Testing and Mutation Testing	
	using JUnit.	
	Unit Testing, Mutation Testing & AI-Driven Automation:-	
	Unit Testing- Static and Dynamic Unit Testing, control flow testing, data flow	
	testing, domain testing; Mutation Testing- Mutation operators, mutants, mutation	
2	score, and modern mutation testing tools (e.g., Muclipse); JUnit Framework -	8
	Automation of unit testing, frameworks for testing in real-world projects; AI in	
	Testing - GenAI for test case generation and optimization, impact on automation;	
	Industry Tools - Application of AI-driven testing tools in automation and	

SYLLABUS

	predictive testing; Case Study - Mutation testing using JUnit, AI-enhanced test case automation.	
3	Advanced White Box Testing & Security Testing:- Graph Coverage Criteria - Node, edge, and path coverage; prime path and round trip coverage; Data Flow Criteria - du paths, du pairs, subsumption relationships; Graph Coverage for Code - Control flow graphs (CFGs) for complex structures (e.g., loops, exceptions); Graph Coverage for Design Elements - Call graphs, class inheritance testing, and coupling data-flow pairs; Security Testing - Fundamentals, tools (OWASP, Burp Suite), and their role in protecting modern applications; Case Study - Application of graph based testing and security testing using industry standard tools.	10
4	Black Box Testing, Grey Box Testing, and Responsive Testing:- Black Box Testing - Input space partitioning, domain testing, functional testing (equivalence class partitioning, boundary value analysis, decision tables, random testing); Grey Box Testing - Introduction, advantages, and methodologies (matrix testing, regression testing, orthogonal array testing); Performance Testing - Network latency testing, browser compatibility, responsive testing across multiple devices (e.g., BrowserStack, LambdaTest); Introduction to PEX - Symbolic execution, parameterized unit testing, symbolic execution trees, and their application; GenAI in Testing - Advanced use cases for predictive and responsive testing across devices and environments; Case Study- Implementation of blackbox, grey-box, and responsive testing using PEX and AI-driven tools.	10

Course Assessment Method (CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A Part B		Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	
carrying 3 marks	• Each question can have a maximum of 3	60
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome		
CO1	Demonstrate the ability to apply a range of software testing techniques, including unit testing using JUnit and automation tools.	К2	
CO2	Illustrate using appropriate tools the mutation testing method for a given piece of code to identify hidden defects that can't be detected using other testing methods.	К3	
СО3	Explain and apply graph coverage criteria in terms of control flow and data flow graphs to improve code quality.	K2	
CO4	Demonstrate the importance of black-box approaches in terms of Domain and Functional Testing	К3	
C05	Illustrate the importance of security, compatibility, and performance testing across devices.	К3	
CO6	Use advanced tools like PEX to perform symbolic execution and optimize test case generation and also leverage AI tools for automated test case prediction and symbolic execution with PEX.	K3	

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3	3							3
CO3	3	3	3									3
CO4	3	3	3	3								3
CO5	3	3	3		3							3
CO6	3	3	3	3	3							3

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	Text Books								
Sl. No	Title of the BookName of the Author/s		Name of the Publisher	Edition and Year					
1	Introduction to Software Testing.	Paul Ammann, Jeff Offutt	Cambridge University Press	2/e, 2016					
2	Software Testing and Quality Assurance: Theory and Practice	Kshirasagar Naik, Priyadarshi Tripathy	Wiley	1/e, 2008					

	Reference Books							
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year				
1	Software Testing	Ron Patten	Pearson	2/e, 2005				
2	Software Testing: A Craftsman's Approach	Paul C. Jorgensen	CRC Press	4/e, 2017				
3	Foundations of Software Testing	Dorothy Graham, Rex Black, Erik van Veenendaal	Cengage	4/e, 2021				
4	The Art of Software Testing	Glenford J. Myers, Tom Badgett, Corey Sandler	Wiley	3/e, 2011				

	Video Links (NPTEL, SWAYAM)							
Module No.								
1	https://archive.nptel.ac.in/courses/106/101/106101163/							
2	https://archive.nptel.ac.in/courses/106/101/106101163/							
3	https://archive.nptel.ac.in/courses/106/101/106101163/							
4	https://archive.nptel.ac.in/courses/106/101/106101163/							

SEMESTER S8

INTERNET OF THINGS

Course Code	OECST834	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	NA	Course Type	Theory

Course Objectives:

- **1.** To give an understanding in the Internet of Things, including the components, tools, and analysis through its fundamentals and real-world applications.
- **2.** To enable the students to develop IoT solutions including the softwares and programming of Raspberry Pi hardware.

Module	Syllabus Description	Contact			
No.					
1	Introduction to IoT - Physical Design of IoT, Logical Design of IoT, IoT levels and Deployment templates, Domain Specific IoT- Home automation, Energy, Agriculture, Health and lifestyle.				
2	IoT and M2M-M2M, Difference between IoT and M2M, Software Defined Networking, Network Function virtualization, Need for IoT System Management, Simple Network Management Protocol (SNMP), NETCONF, YANG; LPWAN - LPWAN applications, LPWAN technologies, Cellular (3GPP) and Non 3GPP standards, Comparison of various protocols like Sigfox, LoRA, LoRAWAN, Weightless, NB-IoT, LTE-M.	9			
3	Developing IoT - IoT design methodology, Case study on IoT system for weather monitoring, Motivations for using python, IoT-system Logical design using python, Python Packages of Interest for IoT - JSON, XML, HTTPlib & URLLib, SMTPLib	9			
4	Programming Raspberry Pi with Python-Controlling LED with Raspberry Pi, Interfacing an LED and switch with Raspberry Pi, Other IoT devices- PcDino, Beagle bone Black, Cubieboard, Data Analytics for IoT	9			

SYLLABUS

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

		Assignment/	Internal	Internal		
	Attendance	Assignment/	Examination-1	Examination- 2	Total	
		Microproject	(Written)	(Written)		
l	5	15	10	10	40	

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total	
2 Questions from each module.	Each question carries 9 marks.		
Total of 8 Questions, each	Two questions will be given from each module, out of		
carrying 3 marks	which 1 question should be answered.		
	Each question can have a maximum of 3 subdivisions.		
(8x3 =24 marks)	(4x9 = 36 marks)		

Course Outcomes (COs)

At the end of the course, students should be able to:

	Course Outcome	Bloom's Knowledg e Level (KL)
CO1	Understand domain-specific applications and apply the principles of IoT, including physical and logical design and deployment templates	К2
CO2	Use the principles of IoT and M2M, their differences, and key concepts like SDN, NFV, and essential management protocols.	К3
CO3	Develop and apply IoT design methodology, utilize Python for logical system design, and leverage key Python packages through practical case studies.	К3
CO4	Experiment using Raspberry Pi with Python to control LEDs and switches, interface with other IoT devices.	К3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3							2		3
CO2	3	3	3							2		3
CO3	3	3	3	2						2		3
CO4	3	3	3	2						2		3

	Text Books								
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year					
1	Internet of Things - a Hands On Approach.	Arshdeep Bahga, Vijay Madisetti	Universities Press	1/e, 2016					

	Reference Books								
Sl. No	Title of the Book	Name of the Author/s	Name of theEditionPublisherand Yes						
1	Internet of Things : Architecture and Design Principles	Rajkamal	McGraw Hill	2/e, 2022					
2	The Internet of Things –Key applications and Protocols	Olivier Hersent, David Boswarthick, Omar Elloumi	Wiley	1/e, 2012					
3	IoT fundamentals : Networking technologies, Protocols and use cases for the Internet of things	David Hanes Gonzalo. Salgueiro, Grossetete, Robert Barton	Cisco Press	1/e, 2017					

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1	https://archive.nptel.ac.in/courses/106/105/106105166/				
2	https://archive.nptel.ac.in/courses/108/108/108108179/				

SEMESTER S8

COMPUTER GRAPHICS

Course Code	OECST835	CIE Marks	40
Teaching Hours/Week (L: T:P: R)	3:0:0:0	ESE Marks	60
Credits	3	Exam Hours	2 Hrs. 30 Min.
Prerequisites (if any)	None	Course Type	Theory

Course Objective:

1. To provide strong technological concepts in computer graphics including the threedimensional environment representation in a computer, transformation of 2D/3D objects and basic mathematical techniques and algorithms used to build applications.

Module	Sullabus Description	Contact
No.	Syllabus Description	
	Basics of Computer graphics - Basics of Computer Graphics and its	
	applications. Video Display devices - LED, OLED, LCD, PDP and FED and	
	reflective displays. Random and Raster scan displays and systems.	
1	Line and Circle drawing Algorithms - Line drawing algorithms-	10
	Bresenham's algorithm, Liang-Barsky Algorithm, Circle drawing algorithms	
	- Midpoint Circle generation algorithm, Bresenham's Circle drawing	
	algorithm.	
	Geometric transformations - 2D and 3D basic transformations -	
	Translation, Rotation, Scaling, Reflection and Shearing, Matrix	
2	representations and homogeneous coordinates.	10
	Filled Area Primitives - Scan line polygon filling, Boundary filling and	
	flood filling.	
	Transformations and Clipping Algorithms - Window to viewport	
3	transformation. Cohen Sutherland and Midpoint subdivision line clipping	8
5	algorithms, Sutherland Hodgeman and Weiler Atherton Polygon clipping	0
	algorithms.	
4	Three dimensional graphics - Three dimensional viewing pipeline.	8
-	Projections- Parallel and Perspective projections. Visible surface detection	U

SYLLABUS

	algorithms-	Back	face	detection,	Depth	buffer	algorithm,	Scan	line
	algorithm, A	buffer	algor	ithm.					

Course Assessment Method

(CIE: 40 marks, ESE: 60 marks)

Continuous Internal Evaluation Marks (CIE):

Attendance	Assignment/ Microproject	Internal Examination-1 (Written)	Internal Examination- 2 (Written)	Total
5	15	10	10	40

End Semester Examination Marks (ESE)

In Part A, all questions need to be answered and in Part B, each student can choose any one full question out of two questions

Part A	Part B	Total
• 2 Questions from each	• Each question carries 9 marks.	
module.	• Two questions will be given from each module, out	
• Total of 8 Questions, each	of which 1 question should be answered.	60
carrying 3 marks	• Each question can have a maximum of 3	00
	subdivisions.	
(8x3 =24 marks)	(4x9 = 36 marks)	

Course Outcomes (COs)

At the end of the course students should be able to:

	Course Outcome	Bloom's Knowledge Level (KL)
CO1	Understand the principles of computer graphics and displays	K2
CO2	Illustrate line drawing, circle drawing and polygon filling algorithms	K3
CO3	Illustrate 2D and 3D basic transformations and matrix representation	K3
CO4	Demonstrate different clipping algorithms and 3D viewing pipeline.	K3

Note: K1- Remember, K2- Understand, K3- Apply, K4- Analyse, K5- Evaluate, K6- Create

CO-PO Mapping Table (Mapping of Course Outcomes to Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3									3
CO2	3	3	3	3								3
CO3	3	3	3	3								3
CO4	3	3	3	3								3

	Text Books					
Sl. No	Title of the Book	Name of the Author/s	Name of the Publisher	Edition and Year		
1	Computer Graphics : Algorithms and Implementations	D. P. Mukherjee, Debasish Jana	PHI	1/e, 2010		
2	Computer Graphics with OpenGL	Donald Hearn, M. Pauline Baker and Warren Carithers	PHI	4/e, 2013		

	Reference Books					
Sl. No	Title of the Book	Title of the BookName of the Author/s				
1	Introduction to Flat Panel Displays	Jiun-Haw Lee, I-Chun Cheng, Hong Hua, Shin-Tson Wu	Wiley	1/e, 2020		
2	Computer Graphics and Multimedia	ITL ESL	Pearson	1/e, 2013		
3	Computer Graphics	Zhigang Xiang and Roy Plastock	McGraw Hill	2/e, 2000		
4	Principles of Interactive Computer Graphics	William M. Newman and Robert F. Sproull	McGraw Hill	1/e, 2001		
5	Procedural Elements for Computer Graphics	David F. Rogers	McGraw Hill	1/e, 2017		
6	Computer Graphics	Donald D Hearn, M Pauline Baker	Pearson	2/e, 2002		

	Video Links (NPTEL, SWAYAM)				
No.	Link ID				
1.	Computer Graphics By Prof. Samit Bhattacharya at IIT Guwahati https://onlinecourses.nptel.ac.in/noc20_cs90/preview				